首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this study, we have performed the preparation of over-oxidized poly(3,4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode (Ox-PEDOT-nf/PGE) to develop a selective and sensitive voltammetric uric acid (UA) sensor. It was noted that the over-oxidation potential and time had a prominent effect on the UA response of the Ox-PEDOT-nf/PGE. Characterizations of PEDOT-nf/PGE and Ox-PEDOT-nf/PGE have been performed by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The highest voltammetric response of UA was obtained at pH 2.0. A linear relationship between the concentration of UA and oxidation peak currents was observed in the concentration range of 0.01–20.0 μM. The detection limit (1.3 nM according to S/N = 3) and reproducibility (RSD: 4.6 % for N:10) have also been determined. The effects of different substances on the determination of UA have been investigated. A very high peak separation value of 423 mV was obtained between UA and ascorbic acid which is the major interfering substance for UA. The use of Ox-PEDOT-nf/PGE has been successfully tested in the determination of UA in human blood serum and urine samples for the first time in the literature.  相似文献   

2.
A novel electrochemical sensor was fabricated by electrodeposition of gold nanoparticles on a poly(L-methionine) (PMT)-modified glassy carbon electrode (GCE) to form a nano-Au/PMT composite-modified GCE (nano-Au/PMT/GCE). Scanning electron microscopy and electrochemical techniques were used to characterize the composite electrode. The modified electrode exhibited considerable electrocatalytic activity towards the oxidation of dopamine (DA) and uric acid (UA) in phosphate buffer solution (pH = 7.00). Differential pulse voltammetry revealed that the electrocatalytic oxidation currents of DA and UA were linearly related to concentration over the range of 5.0×10-8 to 10-6 mol/L for DA and 7.0×10-8 to 10-6 mol/L for UA. The detection limits were 3.7×10-8 mol/L for DA and 4.5×10-8 mol/L for UA at a signal-to-noise ratio of 3. According to our experimental results, nano-Au/PMT/GCE can be used as a sensitive and selective sensor for simultaneous determination of DA and UA.  相似文献   

3.
Electrochemically polymerized luminol film on a glassy carbon electrode (GCE) surface has been used as a sensor for selective detection of uric acid (UA) in the presence of ascorbic acid (AA) and dopamine (DA). Cyclic voltammetry was used to evaluate the electrochemical properties of the poly(luminol) film modified electrode. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used for surface characterizations. The bare GCE failed to distinguish the oxidation peaks of AA, DA and UA in phosphate buffer solution (pH 7.0), while the poly(luminol) modified electrode could separate them efficiently. In differential pulse voltammetric (DPV) measurements, the modified GCE could separate AA and DA signals from UA, allowing the selective determination of UA. Using DPV, the linear range (3.0×10?5 to 1.0×10?3 M) and the detection limit (2.0×10?6 M) were estimated for measurement of UA in physiological condition. The applicability of the prepared electrode was demonstrated by measuring UA in human urine samples.  相似文献   

4.
Nanocrystalline graphite-like pyrolytic carbon film (PCF) electrode fabricated by a non-catalytic chemical vapor deposition (CVD) process was used for the simultaneous electrochemical sensing of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electrode was studied with respect to changes in electrocatalytic activity caused by a simple and fast electrochemical pretreatment. The anodized electrode exhibited excellent performance compared to many chemically modified electrodes in terms of detection limit, linear dynamic range, and sensitivity. Differential pulse voltammetry (DPV) was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Under optimum conditions, the detection limits were 2.9 μM for AA, 0.04 μM for DA, and 0.03 μM for UA with sensitivities of 0.078, 5.345, and 6.192 A M−1, respectively. The peak separation was 219 mV between AA and DA and 150 mV between DA and UA. No electrode fouling was observed and good reproducibility was obtained in all the experiments. The sensor was successfully applied for the assay of DA in an injectable drug and UA in human urine by using standard addition method.  相似文献   

5.
We are presenting an electrochemical sensor for the simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of even high concentrations of ascorbic acid (AA). It based on a glassy carbon electrode modified with an electroactive film of polymerized dibromofluorescein. The electrochemical behaviors of DA and UA were studied by cyclic voltammetry using the modified electrode. It exhibits excellent electrocatalytic activity towards the oxidation of the two analytes. Most notably, the oxidation potentials differ by 180 and 200?mV between AA-DA and DA-UA, respectively. Thus, excellent selectivity towards the oxidation of DA and UA in the presence of even high concentrations of AA is accomplished. Under the optimum conditions, the anodic peak currents are linearly related to the concentrations of DA and UA in the range from 0.2 to 200?μmol?L-1 and from 1.0 to 250?μmol?L-1, respectively. The detection limits for DA and UA are 0.03?μmol?L-1 and 0.2?μmol?L-1, respectively (at an S/N of 3). The method has good selectivity and sensitivity and was successfully applied to the simultaneous determination of DA and UA in spiked human serum.
Figure
A novel electrochemical sensor based on poly (dibromofluorescein) film modified glassy carbon electrode has been fabricated and used for the simultaneous determination of dopamine and uric acid in the presence of high concentration of ascorbic acid with good selectivity and sensitivity.  相似文献   

6.
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture.  相似文献   

7.
Jia D  Dai J  Yuan H  Lei L  Xiao D 《Talanta》2011,85(5):2344-2351
Gold nanoparticles-poly(luminol) (Plu-AuNPs) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode (β-CD-MWCNTs/Plu-AuNPs/GCE) was successfully prepared for simultaneous determination of dopamine (DA) and uric acid (UA). The surface of the modified electrode has been characterized by X-ray photo-electron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscope (SEM) and transmission electron microscope (TEM). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) have been used to investigate the β-CD-MWCNTs/Plu-AuNPs composite film. Gold nanoparticles anchored into poly(luminol) film exhibited catalytic activity for DA. MWCNTs with incorporated β-CD can greatly promote the direct electron transfer. In 0.10 M phosphate buffer solution (PBS, pH 7.0), the DPV response of the β-CD-MWCNTs/Plu-AuNPs/GCE sensor to DA is about 8-fold as compared with the Plu-AuNPs/GCE sensor, and the detection limit for DA is about one order of magnitude lower than the Plu-AuNPs/GCE sensor. The steady-state current response increases linearly with DA concentration from 1.0 × 10−6 to 5.6 × 10−5 M with a low detection limit (S/N = 3) of 1.9 × 10−7 M. Moreover, the interferences of ascorbic acid (AA) and uric acid (UA) are effectively diminished. The applicability of the prepared electrode has been demonstrated by measuring DA contents in dopamine hydrochloride injection.  相似文献   

8.
A platinum (Pt) electrode modified by single-walled carbon nanotubes (SWNTs) and phytic acid (PA) was investigated by voltammetric methods in buffer solution. The PA-SWNTs/Pt-modified electrode demonstrated substantial enhancements in electrochemical sensitivity and selectivity towards dopamine (DA) in the presence of L-ascorbic acid (AA) and uric acid (UA). The PA-SWNTs films promoted the electron transfer reaction of DA, while the PA film, acting as a negatively charged linker, combined with the positively charged DA to induced DA accumulation in the film at pH under 7.4. However, the PA film restrained the electrochemical response of the negatively charged AA due to the electrostatic repulsion. The anodic peak potentials of DA, AA and UA could be separated by electrochemical techniques, and the interferences from AA and UA were effectively eliminated in the DA determination. Linear calibration plots were obtained in the DA concentration range of 0.2-10 μM and the detection limit of the DA oxidation current was determined to be 0.08 μM at a signal-to-noise ratio of 3. The results indicated that the modified electrode can be used to determine DA without interference from AA and UA, while ensuring good sensitivity, selectivity, and reproducibility.  相似文献   

9.
A nafion covered carbon nanotubes-paste electrode modified with poly(m-ferrocenylaniline), (Nf/p(FcAni)-CNTsPE), provides a novel voltammetric sensor for the selective determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). We studied the electrochemical activity of Nf/p(FcAni)-CNTsPE toward DA, UA, and AA by differential pulse voltammetry (DPV). DA and UA anodic peaks appear at 0.30 and 0.45 V, respectively while an anodic peak for AA was not observed. DPV oxidation peak values are linearly dependent on DA concentration over the range 1–150 μM (r2 = 0.992), and on UA concentration over the range 5–250 μM (r2 = 0.997). DA and UA detection limits are estimated to be 0.21 and 0.58 μM, respectively. The modified electrode shows both good selectivity and reproducibility for the selective determination of DA and UA in real samples. Finally, the modified electrode was successfully applied for the determination of DA and UA in pharmaceutical or biological sample fluids.  相似文献   

10.
The present work reports a quercetin-modified wax-impregnated graphite electrode (Qu/WGE) prepared through an electrochemical oxidation procedure in quercetin-containing phosphate buffer solution (PBS), for the purpose of detecting uric acid (UA) in the presence of ascorbic acid (AA). During modification quercetin was oxidized to the corresponding quinonic structure, and in the blank buffer solution the electrodeposited film exhibits a voltammetric response anticipated for the surface-immobilized quercetin. Retarding effect of the film towards the reaction of anionic species was found; therefore the pH of sample solutions was selected to ensure the analyte in molecular form. At suitable pHs the Qu/WGE shows excellent electrocatalytic effect towards the oxidation of both AA and UA, and separates the voltammetric signal of UA from AA by about 280 mV, allowing simultaneous detection of these two species. A linear relation between the peak current and concentration was obtained for UA in the range of 1-50 μM in the presence of 0.5 mM AA, with a detection limit 1.0 μM (S/N = 3). This sensor was stable, reproducible and outstanding for long-term use.  相似文献   

11.
《Analytical letters》2012,45(10):1525-1536
Magnetic chitosan microspheres (MCMS) and thionine were incorporated in a modified electrode for the simultaneous sensitive determination of dopamine (DA) and uric acid (UA). Due to the unique properties of the MCMS and the electron mediation of thionine, this modified electrode showed excellent electrocatalytic oxidation toward dopamine and uric acid with a large separation of peak potentials and a significant enhancement of peak currents. However, the electrochemical behavior of ascorbic acid may be depressed at the modified electrode. Differential pulse voltammetry was used for the simultaneous sensitive determination of dopamine and uric acid in the presence of excess ascorbic acid at this modified electrode. The current responses showed excellent linear relationships in the range of 2–30 µM and 9–100 µM for dopamine and uric acid, respectively. The detection limits were estimated to be 0.5 µM and 2.3 µM for dopamine and uric acid, respectively. In addition, this modified electrode showed excellent repeatability, good stability, and satisfactory reliability, thus indicating potential for the practical applications.  相似文献   

12.
A modified electrode was prepared by modification of the carbon paste electrode (CPE) with a nanostructured material. This nanostructure with electrocatalytic activity was synthesized by combination of poly pyrrole and copper oxide nanoparticles (PPy/CuO). The structure and morphology of PPy/CuO was studied. The fabricated modified electrode (CPE‐PPy/CuO) exhibited an excellent electrocatalytic activity toward levodopa (L‐DOPA) and uric acid (UA) oxidation because of high conductivity, low electron transfer resistance and catalytic effect. The CPE‐PPy/CuO had a lower overvoltage and enhanced electrical current with respect to the bare CPE for both L‐DOPA and UA. Also, the modified electrode showed a good resolution for the overlapped anodic peaks of L‐DOPA and UA. This electrode was used for the successful simultaneous determination of L‐DOPA and UA. The electrochemical sensor responded to L‐DOPA and UA in the concentration range of 0.050–1200 μM and 0.040–2000 μM, respectively. The detection limits were obtained by differential pulse voltammetry as 15 nM for L‐DOPA and 20 nM for UA. Finally, the proposed electrode was used for determination of L‐DOPA and UA in real samples using standard addition method.  相似文献   

13.
A novel inorganic–organic hybrid compound constructed from copper(II)-monosubstituted polyoxometalate Na5PW11Cu(H2O)O39 (PW11Cu) and poly(amidoamine) (PAMAM) dendrimer was prepared at room temperature in an aqueous solution. The title compound PW11Cu/PAMAM was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, indicating that the PW11Cu was chemically anchored to PAMAM. The compound was first used as a bulk-modifier to fabricate a chemically modified carbon paste electrode (CPE) by direct mixing. The PW11Cu/PAMAM bulk-modified CPE showed well-defined cyclic voltammograms with four redox couples in 0.2 M NaAc buffer solution and high electrocatalytic activity for the reduction of hydrogen peroxide and nitrite. Furthermore, the CPE revealed good stability due to the insolubility of the title compound and the interaction between PW11Cu and PAMAM.  相似文献   

14.
Jorge Yánez Heras 《Talanta》2007,71(4):1684-1689
The sequential electrochemical polymerization of aniline and N-(3-propane sulfonic acid)aniline (PSA) is proposed to construct a sensor able to detect ascorbate at physiological conditions. Compared to poly(aniline) modified electrode, a device with improved conducting and electrochemical properties at neutral pH is obtained. The electrochemical copolymerization of the same starting materials is also carried out. For a PSA:aniline ratio of 10:90, a polymer with a similar electrochemical behavior to the one grown in the sequential mode is observed.The detection of ascorbate was tested for both configurations at pH 7.2, the modified electrode is able to determine ascorbate at 0 mV versus Ag/AgCl; an optimized sensor constructed by sequential polymerization can easily detect ascorbate concentrations with a detection limit of 2.2 μM. Uric acid and dopamine does not interfere in the ascorbate determination.  相似文献   

15.
A voltammetric method based on a combination of incorporated Nafion, single-walled carbon nanotubes and poly(3-methylthiophene) film-modified glassy carbon electrode (NF/SWCNT/PMT/GCE) has been successfully developed for selective determination of dopamine (DA) in the ternary mixture of dopamine, ascorbic acid (AA) and uric acid (UA) in 0.1M phosphate buffer solution (PBS) pH 4. It was shown that to detect DA from binary DA-AA mixture, the use of NF/PMT/GCE was sufficient, but to detect DA from ternary DA-AA-UA mixture NF/SWCNT/PMT/GCE was required. The later modified electrode exhibits superior electrocatalytic activity towards AA, DA and UA thanks to synergic effect of NF/SWCNT (combining unique properties of SWCNT such as high specific surface area, electrocatalytic and adsorptive properties, with the cation selectivity of NF). On the surface of NF/SWCNT/PMT/GCE AA, DA, UA were oxidized respectively at distinguishable potentials of 0.15, 0.37 and 0.53 V (vs. Ag/AgCl), to form well-defined and sharp peaks, making possible simultaneous determination of each compound. Also, it has several advantages, such as simple preparation method, high sensitivity, low detection limit and excellent reproducibility. Thus, the proposed NF/SWCNT/PMT/GCE could be advantageously employed for the determination of DA in real pharmaceutical formulations.  相似文献   

16.
A novel electrode was developed through electrodepositing gold nanoparticles (GNPs) on overoxidized-polyimidazole (PImox) film modified glassy carbon electrode (GCE). The combination of GNPs and the PImox film endowed the GNPs/PImox/GCE with good biological compatibility, high selectivity and sensitivity and excellent electrochemical catalytic activities towards ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). In the fourfold co-existence system, the peak separations between AA–DA, DA–UA and UA–Trp were large up to 186, 165 and 285 mV, respectively. The calibration curves for AA, DA and UA were obtained in the range of 210.0–1010.0 μM, 5.0–268.0 μM and 6.0–486.0 μM with detection limits (S/N = 3) of 2.0 μM, 0.08 μM and 0.5 μM, respectively. Two linear calibrations for Trp were obtained over ranges of 3.0–34.0 μM and 84.0–464.0 μM with detection limit (S/N = 3) of 0.7 μM. In addition, the modified electrode was applied to detect AA, DA, UA and Trp in samples using standard addition method with satisfactory results.  相似文献   

17.
采用具有一维手性通道的手性金属有机框架HMOF-Zn与乙炔黑共混复合作为修饰材料改性玻碳电极(HMOF-Zn@AB-Nafion-GCE)。并将复合后的电极对多巴胺(DA)和尿酸(UA)进行同时检测。实验结果表明,HMOF-Zn@AB-Nafion-GCE传感器对UA和DA具有高的灵敏度和良好的选择性,且HMOF-Zn@AB-Nafion-GCE传感器表现出对DA比对UA更高的灵敏度。HMOF-Zn@AB-Nafion-GCE传感器对DA和UA的高灵敏度和高选择性是因为HMOF-Zn有较大的比表面积,同时存在丰富的氢键,在高导电剂乙炔黑的协同作用下能增大电子传递。此外,所制备的传感器在优化条件下对DA和UA均表现出优异的线性响应,DA检测范围为0.15~2.5μmol·L^-1,UA检测范围为0.2~4μmol·L^-1,检出限(S/N=3)分别为0.003和0.02μmol·L^-1,重现性良好。该传感器还成功应用于测定人体尿液中UA和多巴胺盐酸盐注射液中的DA。  相似文献   

18.
A sensitive and selective electrochemical method for the determination of dopamine using an Evans Blue polymer film modified on glassy carbon electrode was developed. The Evans blue polymer film modified electrode shows excellent electrocatalytic activity toward the oxidation of dopamine in phosphate buffer solution (pH 4.5). The linear range of 1.0 x 10(-6)-3.0 x 10(-5) M and detection limit of 2.5 x 10(-7) M were observed in pH 4.5 phosphate buffer solutions. The interference studies showed that the modified electrode exhibits excellent selectivity in the presence of large excess of ascorbic acid and uric acid. The separation of the oxidation peak potentials for dopamine-ascorbic acid and dopamine-uric acid were about 182 mV and 180 mV, respectively. The differences are large enough to determine AA, DA and UA individually and simultaneously. This work provides a simple and easy approach to selectively detect dopamine in the presence of ascorbic acid and uric acid in physiological samples.  相似文献   

19.
采用电化学法将钯纳米粒子(PdNPs)沉积在第四代聚酰胺-胺树状大分子(G4.0 PAMAM)功能化碳纳米管(MWCNTs)复合材料(G4.0-MWCNTs)修饰的玻碳电极表面,构建了一种新型过氧化氢(H2O2)传感器。采用场发射扫描电镜、循环伏安法和电化学阻抗谱对修饰电极进行表征,结果表明,大量高分散的PdNPs沉积在G4.0-MWCNTs修饰的电极上,修饰电极对H2 O2还原具有优异的电催化性能。在优化条件下,H2 O2浓度在1.0×10-9~1.0×10-3 mol/L范围内与电流响应呈线性关系,检出限为3×10-10 mol/L (S/N=3),测定血清实样加标回收率在96.7%~103.1%之间。  相似文献   

20.
A glassy carbon electrode modified with poly(3,4-ethylenedioxypyrrole-2,5-dicarboxylic acid) nanofibers (PEDOPA-NFs) was prepared for the determination of norepinephrine (NE) in phosphate buffer saline. The modified electrode demonstrated an improved sensitivity and selectivity toward the electrochemical detection of NE and could detect separately ascorbic acid (AA), uric acid (UA), and NE in their mixture. The separations of the oxidation peak potentials of NE–AA and NE–UA were 160 and 150 mV, respectively. Meanwhile, the modified electrode showed higher sensitivity and selectivity toward NE than dopamine and epinephrine. Using differential pulse voltammetry, the oxidation peak current of NE was found to be linearly dependent on its concentration within the range of 0.3–10 μM, and the detection limit of the NE oxidation current was 0.05 μM at a signal-to-noise ratio of 3. The PEDOPA-NFs promoted the electron transfer reaction of NE, while the PEDOPA-NFs, acting as a negatively charged linker, combined with the positively charged NE to induce NE accumulation in the NFs at pH under 7.4. However, the PEDOPA-NFs restrained the electrochemical response of the negatively charged AA and UA due to the electrostatic repulsion. The result indicates that the modified electrode can be used to determine NE without interference from AA and UA and selectively in the mixture of catecholamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号