共查询到20条相似文献,搜索用时 20 毫秒
1.
《Chemical physics》2003,286(2-3):149-163
The photodissociation dynamics of [Ru(PH3)3(CO)(H)2] complex in the lowest two singlet excited electronic states has been theoretically analyzed. Reduced two-dimensional potential energy surfaces (PES) are built up by combining a time-dependent method to calculate the excited states energy with DFT (B3LYP) electronic calculations of the ground state. By means of a Fast Fourier Transform (FFT) algorithm the time evolution of the wavefunction upon vertical transition from the minimum of the ground state to both diabatic states has been followed. The propagation in S1, the lowest in energy at the vertical transition point and the one with a larger transition probability from the ground state, discloses that the system is not evolving from the initial position at least in the time spanned by the calculations. Conversely the H2 elimination is very fast (about 37 fs) in the S2 state. In this state the vertical transition puts the system in a purely dissociative zone of the PES. In that state FFT results indicate that the lengthening of the Ru–H2 distance and the shortening of the H–H one are taking place almost simultaneously. 相似文献
2.
3.
Chantler VL Chatwin SL Jazzar RF Mahon MF Saker O Whittlesey MK 《Dalton transactions (Cambridge, England : 2003)》2008,(19):2603-2614
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes. 相似文献
4.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068). 相似文献
5.
Z. A. Kerzina M. I. Rybinskaya F. M. Dolgushin A. I. Yanovsky P. V. Petrovskii E. Kolehmainen 《Russian Chemical Bulletin》1998,47(3):490-495
The reaction of Ru3(CO)12 with tetramethyltrifluoromethylcyclopentadiene at various ratios of the reagents was studied. Refluxing of Ru3(CO)12 with a sixfold excess of tetramethyltrifluoromethylcyclopentadiene in octane in an inert atmosphere gave a complex, which
is, according to X-ray diffraction data, a dimer,trans-[Ru(η5-C5Me4CF3)(CO)2]2. The reaction under the same conditions but starting from Ru3(CO)12 and C5Me4CF3H in 2∶1 molar ratio gave a hexaruthenium cluster [Ru6(μ3-H)(η2-μ4-CO)2(μ-CO)(Co)12(η5-C5Me4CF2)], which was characterized by IR as well as1H,13C, and19F NMR spectroscopy. According to X-ray diffraction data, an Ru4 tetrahedron, in which two edges are bound by additional “briding” Ru atoms, constitutes the frame of this compound. This
complex has one (η5-C5Me4CF3) ligand, as well as one (μ3-H) and two (η2-μ4-CO) groups.
Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 507–512, March, 1998. 相似文献
6.
Busby M Matousek P Towrie M Clark IP Motevalli M Hartl F Vlcek A 《Inorganic chemistry》2004,43(14):4523-4530
The lowest allowed electronic transition of fac-[Re(Cl)(CO)(3)(bopy)(2)] (bopy = 4-benzoylpyridine) has a Re --> bopy MLCT character, as revealed by UV-vis and stationary resonance Raman spectroscopy. Accordingly, the lowest-lying, long-lived, excited state is Re --> bopy (3)MLCT. Electronic depopulation of the Re(CO)(3) unit and population of a bopy pi orbital upon excitation are evident by the upward shift of nu(CO) vibrations and a downward shift of the ketone nu(C=O) vibration, respectively, seen in picosecond time-resolved IR spectra. Moreover, reduction of a single bopy ligand in the (3)MLCT excited state is indicated by time-resolved visible and resonance Raman (TR(3)) spectra that show features typical of bopy(*)(-). In contrast, the lowest allowed electronic transition and lowest-lying excited state of a new complex fac-[Re(bopy)(CO)(3)(bpy)](+) (bpy = 2,2'-bipyridine) have been identified as Re --> bpy MLCT with no involvement of the bopy ligand, despite the fact that the first reduction of this complex is bopy-localized, as was proven spectroelectrochemically. This is a rare case in which the localizations of the lowest MLCT excitation and the first reduction are different. (3)MLCT excited states of both fac-[Re(Cl)(CO)(3)(bopy)(2)] and fac-[Re(bopy)(CO)(3)(bpy)](+) are initially formed vibrationally hot. Their relaxation is manifested by picosecond dynamic shifts of nu(C(triple bond)O) IR bands. The X-ray structure of fac-[Re(bopy)(CO)(3)(bpy)]PF(6).CH(3)CN has been determined. 相似文献
7.
8.
Kadish KM Phan TD Giribabu L Shao J Wang LL Thuriere A Van Caemelbecke E Bear JL 《Inorganic chemistry》2004,43(3):1012-1020
Eleven different Ru(2)(4+) and Ru(2)(3+) derivatives are characterized by thin-layer FTIR and UV-visible spectroelectrochemistry under a CO atmosphere. These compounds, which were in-situ electrogenerated from substituted anilinopyridine complexes with a Ru(2)(5+) core, are represented as Ru(2)(L)(4)Cl where L = 2-CH(3)ap, ap, 2-Fap, 2,3-F(2)ap, 2,4-F(2)ap, 2,5-F(2)ap, 3,4-F(2)ap, 3,5-F(2)ap, 2,4,6-F(3)ap, or F(5)ap. The Ru(2)(5+) complexes do not axially bind CO while mono- and bis-CO axial adducts are formed for the Ru(2)(4+) and Ru(2)(3+) derivatives, respectively. Six of the eleven investigated compounds exist in a (4,0) isomeric form while five adopt a (3,1) geometric conformation. These two series of compounds thus provide a large enough number of derivatives to examine trends and differences in the spectroscopic data of the two types of isomers in their lower Ru(2)(4+) and Ru(2)(3+) oxidation states. UV-visible spectra of the Ru(2)(4+) derivatives and IR spectra of the Ru(2)(3+) complexes under CO are both isomer dependent, thus suggesting that these data can be used to reliably predict the isomeric form, i.e., (3,1) or (4,0), of diruthenium complexes containing four unsymmetrical substituted anilinopyridinate bridging ligands; this was confirmed by X-ray crystallographic data for seven compounds whose structures were available. 相似文献
9.
10.
Kuo CK Liu IP Yeh CY Chou CH Tsao TB Lee GH Peng SM 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(5):1442-1451
The neutral, monocationic, and dicationic linear trinuclear ruthenium compounds [Ru(3)(dpa)(4)(CN)(2)], [Ru(3)(dpa)(4)(CN)(2)][BF(4)], [Ru(3)(dpa)(4)Cl(2)][BF(4)], and [Ru(3)(dpa)(4)Cl(2)][BF(4)](2) (dpa=the anion of dipyridylamine) have been synthesized and characterized by various spectroscopic techniques. Cyclic voltammetric and spectroelectrochemical studies on the neutral and oxidized compounds are reported. These compounds undergo three successive metal-centered one-electron-transfer processes. X-ray structural studies reveal a symmetrical Ru(3) unit for these compounds. While the metal--metal bond lengths change only slightly, the metal--axial ligand lengths exhibit a significant decrease upon oxidation of the neutral complex. The electronic configuration of the Ru(3) unit changes as the axial chloride ligands are replaced by the stronger "pi-acid" cyanide axial ligands. Magnetic measurements and (1)H NMR spectra indicate that [Ru(3)(dpa)(4)Cl(2)] and [Ru(3)(dpa)(4)Cl(2)][BF(4)](2) are in a spin state of S=0 and [Ru(3)(dpa)(4)Cl(2)][BF(4)], [Ru(3)(dpa)(4)(CN)(2)], and [Ru(3)(dpa)(4)(CN)(2)][BF(4)] are in spin states of S=1/2, 1, and 3/2, respectively. These results are consistent with molecular orbital (MO) calculations. 相似文献
11.
12.
Belletti D Graiff C Massera C Minarelli A Predieri G Tiripicchio A Acquotti D 《Inorganic chemistry》2003,42(25):8509-8518
The reactions of [M3(CO)12] (M=Ru or Fe) with 1,2 bis[(diphenylphosphino)methyl]benzene diselenide (dpmbSe2) in hot toluene afford a variety of phosphine-substituted selenido carbonyl clusters. They belong to the following three families: (i) 50-electron clusters with a M3Se2 core (2, 3, 5-7), (ii) 48-electron clusters with a M3Se core (1, 8), (iii) 34-electron clusters with a M2Se2 core (4). All these species derive from the P=Se bond cleavage. Cluster 1, which contains a hydrido, a phosphido, and a carbene ligand, is produced by multiple fragmentation of the diphosphine. This fragmentation appears related to the presence of the selenido ligand on the cluster, as the reaction of [Ru3(CO)12] with dpmb (not selenized) produces only carbonyl substitution by the phosphine to give [Ru3(CO)10(mu-dpmb)] (9). All the clusters synthesized have been characterized by spectroscopic techniques, and in some cases fluxional behavior has been detected in solution by NMR analysis. The structures of 1, 2, and 7-9 have been determined by X-ray diffraction methods. 相似文献
13.
14.
Page MJ Mahon MF Whittlesey MK 《Dalton transactions (Cambridge, England : 2003)》2011,40(31):7858-7865
Thermolysis of [Ru(PPh(3))(dppe)(CO)HCl] (dppe = 1,2-bis(diphenylphosphino)ethane) with the N-heterocyclic carbenes I(i)Pr(2)Me(2) (1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene), IEt(2)Me(2) (1,3-diethyl-4,5-dimethyl-imidazol-2-ylidene) or ICy (1,3-dicyclohexylimidazol-2-ylidene) gave the cyclometallated carbene complexes [Ru(NHC)'(dppe)(CO)H] (NHC = I(i)Pr(2)Me(2), 4; IEt(2)Me(2), 5; ICy, 6). Dissolution of 4 in CH(2)Cl(2) or CHCl(3) gave the trans-Cl-Ru-P complex [Ru(I(i)Pr(2)Me(2))'(dppe)(CO)Cl] (7), which converted over hours at room temperature to the trans-Cl-Ru-CO isomer 7'. Chloride abstraction from 7 by NaBPh(4) under an atmosphere of H(2) produced the cationic mono-hydride complex [Ru(I(i)Pr(2)Me(2))(dppe)(CO)H][BPh(4)] (9), which could also be formed by protonating 4 with 1 eq HBF(4)·OEt(2). Treatment of 4 with excess HBF(4)·OEt(2) followed by extraction into MeCN produced the dicationic acetonitrile complex [Ru(I(i)Pr(2)Me(2))(dppe)(CO)(NCMe)(2)][BF(4)](2) (10). The structures of 6, 7, 7' and 10 have been determined by X-ray crystallography. 相似文献
15.
16.
The nature of the excited states of [Ru(bpy)2dppz]2+ has been investigated using density functional theory with the hybrid functional B3LYP. The excitations were studied via linear response theory (TDDFT) and DeltaSCF calculations and the solvent effects were introduced by embedding the molecule in a continuum dielectric medium. It was found that the solvent effects are critical in understanding the nature of the excitations. For the molecule in ethanol, the lowest absorption predicted by TDDFT is a dark state 3pi --> pi with the electron and hole spread over the dppz ligand. Next come the excitations of 3MLCT between the ruthenium and the dppz and finally the 3MLCT excitations between the ruthenium and the bpy ligands not associated with the phenazine. Using deltaSCF calculations two low-lying excited states were identified and the geometry optimized in the presence of the continuum medium. At the optimal geometry the lowest excited state is 3MLCT (Ru --> dppz). The 3pi --> pi state is found only 0.026 eV higher. 相似文献
17.
Wallin S Davidsson J Modin J Hammarström L 《The journal of physical chemistry. A》2005,109(21):4697-4704
It is known that the relaxed excited state of [Ru(bpy)3]2+ is best described as a metal to ligand charge transfer (MLCT) state having one formally reduced bipyridine and two neutral. Previous reports have suggested [Malone, R. et al. J. Chem. Phys. 1991, 95, 8970] that the electron "hops" from ligand to ligand in the MLCT state with a time constant of about 50 ps in acetonitrile. However, we have done transient absorption anisotropy measurements indicating that already after one picosecond the molecule has no memory of which bipyridine was initially photoselected, which suggests an ultrafast interligand randomization of the MLCT state. 相似文献
18.
Blazina D Duckett SB Dyson PJ Johnson BF Lohman JA Sleigh CJ 《Journal of the American Chemical Society》2001,123(40):9760-9768
The clusters Ru(3)(CO)(10)L(2), where L = PMe(2)Ph or PPh(3), are shown by NMR spectroscopy to exist in solution in at least three isomeric forms, one with both phosphines in the equatorial plane on the same ruthenium center and the others with phosphines in the equatorial plane on different ruthenium centers. Isomer interconversion for Ru(3)(CO)(10)(PMe(2)Ph)(2) is highly solvent dependent, with DeltaH decreasing and DeltaS becoming more negative as the polarity of the solvent increases. The stabilities of the isomers and their rates of interconversion depend on the phosphine ligand. A mechanism that accounts for isomer interchange involving Ru-Ru bond heterolysis is suggested. The products of the reaction of Ru(3)(CO)(10)L(2) with hydrogen have been monitored by NMR spectroscopy via normal and para hydrogen-enhanced methods. Two hydrogen addition products are observed with each containing one bridging and one terminal hydride ligand. EXSY spectroscopy reveals that both intra- and interisomer hydride exchange occurs on the NMR time scale. On the basis of the evidence available, mechanisms for hydride interchange involving Ru-Ru bond heterolysis and CO loss are proposed. 相似文献
19.
Martin J. Mays Paul R. Raithby Philip L. Taylor K. Kim Henrick 《Journal of organometallic chemistry》1982,224(4):C45-C48
The synthesis of a (μ4-PPh) and some related (μ3-PPh) mixed metal clusters containing ruthenium is described together with the X-ray structures of [Ru3Rh2(CO)13(PEt3)(μ4-PPh)] and [Ru3Au(μ2-H)(CO)9(PMe2Ph)(μ3-PPh)]. 相似文献
20.
我们利用DFT中的B3LYP方法优化了Ru(Ⅱ)配合物和氧化的Ru(Ⅲ)配合物[Ru(bpy)(PH3)(-C≡CC6H4NO2-p)Cl]m[bpy=2,2′-bipyridine;m=0(1), 1(1 )]的基态几何结构,得到的几何参数与实验结果吻合的很好。采用TDDFT方法,得到了配合物1和1 的激发态电子结构和电子吸收光谱。研究结果表明,配合物1和1 随着氧化过程的发生,光谱性质也发生变化,Ru(Ⅱ)配合物的低能吸收被指认为MLCT/LLCT混合跃迁,而氧化的Ru(Ⅲ)配合物1 的低能吸收具有LMCT跃迁性质。 相似文献