首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dissimilar full depth laser-butt welding of low carbon steel and austenitic steel AISI 316 was investigated using CW 1.5 kW CO2 laser. The effect of laser power (1.1–1.43 kW), welding speed (25–75 cm/min) and focal point position (?0.8 to ?0.2 mm) on the weld-bead geometry (i.e. weld-bead area, A; upper width, Wu; lower width, Wl and middle width, Wm) and on the operating cost C was investigated using response surface methodology (RSM). The experimental plan was based on Box–Behnken design; linear and quadratic polynomial equations for predicting the weld-bead widthness references were developed. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used. The regression equations were used to find optimum welding conditions for the desired geometric criteria.  相似文献   

2.
Laser welding continues to become more extensively used in many industrial applications and in the last 10 years an increasing number of studies have examined ways to increase the efficiency of the process. This study investigates the influence of joint edge surface roughness on weld quality and penetration depth. The characteristics are investigated of welded samples of two low alloyed steels, S355 and St 3, of 20 mm thickness with various joint edge surface roughness levels in butt joint configuration. Welding was performed with different fiber lasers with a wavelength of 1070 nm at power levels from 10 to 15 kW. The absorption characteristics were evaluated at 10 kW power level using a calorimeter. There was a significant positive correlation between edge surface roughness level and the penetration depth. Optimum roughness levels to provide maximum penetration depth are presented. The highest penetration depth at power levels of 14 and 10 kW was achieved at Ra=6.3 μm.  相似文献   

3.
We used an approach based on the self-imaging property of gratings to fabricate high-resolution Fresnel zone plates (FZPs). Under certain conditions, the illumination of a parent ZP with a wideband EUV beam produces a radially oscillating intensity distribution with double the spatial frequency of the ZP. This intensity distribution is observed in a certain distance range, given by the local zone width, the focal length of the ZP, and the spectral bandwidth of the illuminating beam. This phenomenon has been used to lithographically record daughter ZPs that have approximately half the zone width, thus twice the resolution, of the parent ZP. FZPs with zone widths as low as 30 nm have been fabricated in this way. Use of this technique in the extreme ultraviolet (EUV) region has the potential for high throughput production of FZPs and similar high-resolution diffraction optics with variable spatial frequency for the EUV and x-ray regions.  相似文献   

4.
An AlGaInAs quantum-well structure grown on a Fe-doped InP transparent substrate is developed to be a gain medium in a high-peak-power nanosecond laser at 1570 nm. Using an actively Q-witched 1064 nm laser to pump the gain chip, an average output power of 135 mW is generated at a pulse repetition rate of 30 kHz and an average pump power of 1.25 W. At a pulse repetition rate of 20 kHz, the peak output power is up to 290 W at a peak pump power of 2.3 kW.  相似文献   

5.
In this study, a compact and efficient Nd:YLF laser at 1053 nm has been reported without inserting optical intracavity element to suppress the stronger line of 1047 nm. According to theoretical analysis and calculation, the thermal focal length of 1047 nm is negative while that of 1053 nm is positive in plane-parallel resonator. Hence 1053 nm laser was stable in this cavity. In our experiment, 7.5 W laser output at σ-polarized 1053 nm has been obtained with optical–optical efficiency of 38.8%. As the pulse repetition rate is 20 kHz, the pulse width is 50 ns and the peak power is calculated to be 7.5 kW.  相似文献   

6.
《Physics letters. A》1996,223(6):458-462
Plasma density was measured with a heterodyne microwave interferometer in both a gas-filled X-band backward wave oscillator (BWO) and in a smooth tube. Plasma is generated by impact ionization of a 650 kV, 2 kA electron beam. For fixed gas pressure we found that the plasma density rise in the operating BWO was much faster than in a smooth tube, indicating that Trivelpiece-Gould modes, or high power microwaves, increase plasma generation. Additional plasma enhanced BWO microwave output power. Measured plasma density at optimum power levels was ncr ≈ 6 × 1012cm−3 at onset of emitted microwaves.  相似文献   

7.
High-peak-power, short-pulse-width diode pumped 946 nm Nd:YAG laser in passively Q-switching operation with Cr4+:YAG is reported. The highest average output power reaches 3.4 W using the Cr4+:YAG with initial transmissivity T0=95%. When the T0=90% Cr4+:YAG is employed, the maximum peak power of 31.4 kW with a pulse width of 8.3 ns at 946 nm is generated.  相似文献   

8.
《Ultrasonics sonochemistry》2014,21(3):1258-1264
Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10–40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm2. The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5 s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure.  相似文献   

9.
The bactericidal effect of both negative and positive ions generated by a dc electrical corona in nitrogen were investigated. Tryptic soy broth agar plates inoculated with Escherichia coli (E. coli) (strain DH5-α) were placed into a custom-built multi-point-to-plane ion generator situated within a glass chamber. Under a nitrogen atmosphere the plates were exposed to either negative or positive ions for various time periods. The plates were then removed and incubated at 37°C for 15 h and the colonies counted. Exposure to either negative or positive ions produced significant reductions (p<0.05) in colony number. Bacterial plates exposed to a constant 200 μA negative current for 30 min demonstrated a 65% reduction in colony number compared to unexposed plates. Increasing the exposure current to 400 μA, further increased the level of disinfection at 30 min to 91%. Exposure to 200 μA current of positive ions produced a 72% reduction after 10 min and virtual sterilisation after 30 min with a 98% reduction in colony number. These results indicate that exposure to negative and particularly positive ions has a lethal effect on E. coli cells. Cell death could be due to a physiological change in the outer membrane as a result of ionic interactions.  相似文献   

10.
We use a single walled carbon nanotubes (SWCNTs) absorber to demonstrate a high power mode locking for Nd:YVO4 lasers. Under the pump power of 12 W, continuous wave mode-locked (CWML) pulse were generated with the maximum average output power of 3.6 W and the pulse duration of 7.6 ps. The peak power and the single pulse energy of the mode-locked laser were up to 4.9 kW and 37.5 nJ, respectively. To our knowledge, this is the highest average output power of the CWML laser with the SWCNTs absorber reported.  相似文献   

11.
In this paper, we demonstrated an actively Q-switched, radially polarized, and laser-diode end-pumped Nd:YAG laser with an acousto-optic modulator as the Q switch and a photonic crystal grating as the output coupler. The laser generated pulses of 26.4–67.2 ns duration, and the repetition rate can be continuously adjusted from 500 Hz to 9.238 kHz with peak power up to 7.75 kW. Such a radially polarized pulse would facilitate numerous applications.  相似文献   

12.
An electrohydrodynamic (EHD) atomization from a point-to-plate system, with a wet porous point as a corona electrode, has been studied. And the atomized water droplets from the wet porous point, as well as the water droplet traces, the water droplet charge-to-mass ratios, and the water droplet number concentrations, were investigated. It was observed that the wet porous point can atomize abundant amounts of water droplet, 2.8, 2.6 and 2.2 mg/min for negative, AC and positive corona, respectively. The migrated water droplet traces were observed. The positive wet porous point atomized very fine water droplets than those obtained with the negative wet porous point. Moreover, the water droplets atomized from the AC corona showed granular-like larger traces. A weak corona discharge can atomize water droplets very effectively. On the other hand, an intensive corona discharge can eject more water droplets. As a result with the wet porous point, the maximum corona-current-based and corona-power-based water droplet atomization yields of YC = 3.34, 3.32 and 3.25 μg/μAs and YP = 0.35, 0.40 and 0.27 mg/Ws have been obtained for the negative, AC and positive corona discharges.  相似文献   

13.
《Current Applied Physics》2020,20(5):660-672
In this paper, modeling and simulations are carried out using COMSOL Multiphysics. A three-dimensional model is developed for a planar intermediate temperature (IT) solid oxide fuel cell (SOFC). A parametric study has been carried out to analyze the performance of SOFC.Simulations reveal some promising features and enhanced performance of SOFC. It is shown that the maximum value of power (4–3.3) kW/m2 still remains higher with significant rise of temperature (600 °C–1000 °C), nearly 0.15 kW/m2 is the very small loss of power per 100 °C rise of temperature. Results have shown that the electrolytic current density is (6700–5500) A/m2 for peak value of power (4–3.3) kW/m2 with increase of temperature (600 °C–1000 °C). For model validation we have plotted a comparison of average current density.  相似文献   

14.
The paper presents the experimental results on how the active additive HBr and the temperatures of the containers with CuBr influence the gain characteristics of large volume (8 cm bore, 90 cm long) CuBr laser active media with the external heating of the active zone of the gas discharge tube (GDT). It has been demonstrated that an increase in the concentration of CuBr vapors results in the contraction of the gain profile of the active medium, consistent with the increase of the gain factor in the axial region of GDT. The contraction is also imposed by HBr addition. Despite the fact that we used the external heating of GDT at the pump power of 1.5 kW and less, the energy input is still not sufficient to produce the effective generation for large active volume lasers; and it is evident from the small gain profile width. The maximum gain profile width under experimental conditions (consider Pout/Pin > 2) was 3 cm; this value was obtained without HBr-additive within the active volume, while the concentration of CuBr vapors being significantly less than optimal, that corresponds to the maximum average lasing power.  相似文献   

15.
An inductively coupled plasma machine has been modified to be able to apply working powers in the order of 1 kW, thus switching to the real inductive H-mode. The plasma is generated by applying a 13.56 MHz radio-frequency to a λ/4 antenna outside the plasma chamber in low pressure conditions. The working gas is argon at pressure in the range from 10 to 100 Pa. With this high power source we have been able to perform plasma etching on a poly(vinyl-chloride) (PVC) film. In particular the effect of the plasma is the selective removal of hydrogen and chlorine from the sample surface. The action of the high power plasma on the sample has been proved to be much more effective than that of the low power one. Results similar to those obtained with the low power machine at about 300 W for 120 min, have been obtained with the high power source at about 600 W for 30 min. The superficial generation of a conductive layer of double C=C bonds was obtained. The samples have been investigated by means of ATR spectroscopy, FIB/SEM microscopy and micro-electrical measurements, which revealed the change in charge conductivity.  相似文献   

16.
We have developed and tested a gyroklystron operating with the second harmonic of the electron cyclotron frequency at a frequency of 32.3 GHz in the field of a permanent magnet. In the two-and three-cavity versions of the gyroklystron, the peak power of the output radiation reached 320 kW with an efficiency of 30%, an amplification coefficient of 20–25 dB, and an operating frequency bandwidth of 0.05%. In the wide-band version of the gyroklystron, the amplification bandwidth was equal to 0.27% for an output power of 200 kW and an amplification coefficient of 13 dB.  相似文献   

17.
We propose a sub-THz continuous wave (CW) generation scheme using a high-order harmonics modulated lightwave (HML) to reduce an electronic dependency of a conventional double sideband suppressed carrier (DSB-SC) scheme. The electronic dependency should be overcome to increase frequency tunability of the conventional DSB-SC scheme. This is because the frequency of a local oscillator (LO), fLO, should be one-half frequency of the frequency of a desired sub-THz CW in the conventional DSB-SC scheme. The proposed scheme is formed by adding an optical feedback loop to the conventional DSB-SC scheme. In order to verify our proposed scheme, a 120 GHz CW is generated using the LO with fLO = 20 GHz. Based on our experimental results, we have found that the frequency of the LO can be reduced by our proposed scheme up to one-sixth (20 GHz) of 120 GHz. The 120 GHz CW generated by the proposed scheme has 52 dB higher photomixed output power with narrow spectral linewidth than that of the 120 GHz CW generated by the conventional DSB-SC scheme using the LO with fLO = 20 GHz. Consequently, our proposed scheme can be helpful to reduce the electronic dependency of the conventional DSB-SC scheme.  相似文献   

18.
Boiling histotripsy is a promising High-Intensity Focused Ultrasound (HIFU) technique that can be used to induce mechanical tissue fractionation at the HIFU focus via cavitation. Two different types of cavitation produced during boiling histotripsy exposure can contribute towards mechanical tissue destruction: (1) a boiling vapour bubble at the HIFU focus and (2) cavitation clouds in between the boiling bubble and the HIFU source. Control of the extent and degree of mechanical damage produced by boiling histotripsy is necessary when treating a solid tumour adjacent to normal tissue or major blood vessels. This is, however, difficult to achieve with boiling histotripsy due to the stochastic formation of the shock scattering-induced inertial cavitation clouds. In the present study, a new histotripsy method termed pressure-modulated shockwave histotripsy is proposed as an alternative to or in addition to boiling histotripsy without inducing the shock scattering effect. The proposed concept is (a) to generate a boiling vapour bubble via localised shockwave heating and (b) subsequently control its extent and lifetime through manipulating peak pressure magnitudes and a HIFU pulse length. To demonstrate the feasibility of the proposed method, bubble dynamics induced at the HIFU focus in an optically transparent liver tissue phantom were investigated using a high speed camera and a passive cavitation detection systems under a single 10, 50 or 100 ms-long 2, 3.5 or 5 MHz pressure-modulated HIFU pulse with varying peak positive and negative pressure amplitudes from 5 to 89 MPa and −3.7 to −14.6 MPa at the focus. Furthermore, a numerical simulation of 2D nonlinear wave propagation with the presence of a boiling bubble at the focus of a HIFU field was conducted by numerically solving the generalised Westervelt equation. The high speed camera experimental results showed that, with the proposed pressure-modulated shockwave histotripsy, boiling bubbles generated by shockwave heating merged together, forming a larger bubble (of the order of a few hundred micron) at the HIFU focus. This coalesced boiling bubble then persisted and maintained within the HIFU focal zone until the end of the exposure (10, 50, or 100 ms). Furthermore, and most importantly, no violent cavitation clouds which typically appear in boiling histotripsy occurred during the proposed histotripsy excitation (i.e. no shock scattering effect). This was likely because that the peak negative pressure magnitude of the backscattered acoustic field by the boiling bubble was below the cavitation cloud intrinsic threshold. The size of the coalesced boiling bubble gradually increased with the peak pressure magnitudes. In addition, with the proposed method, an oval shaped lesion with a length of 0.6 mm and a width of 0.1 mm appeared at the HIFU focus in the tissue phantom, whereas a larger lesion in the form of a tadpole (length: 2.7 mm, width: 0.3 mm) was produced by boiling histotripsy. Taken together, these results suggest that the proposed pressure-modulated shockwave histotripsy could potentially be used to induce a more spatially localised tissue destruction with a desired degree of mechanical damage through controlling the size and lifetime of a boiling bubble without the shock scattering effect.  相似文献   

19.
KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator (VIRCATOR) device. HPM power measurements were carried out using a transmitting-receiving system in the presence of intense high frequency (a few MHz) electromagnetic noise. Initially, the diode detector output signal could not be recorded due to the high noise level persisting in the ambiance. It was found that the HPM pulse can be successfully detected using wide band antenna, RF cable and diode detector set-up in the presence of significant electromagnetic noise. Estimated microwave peak power was ∼59.8 dBm (∼1 kW) at 7 m distance from the VIRCATOR window. Peak amplitude of the HPM signal varies on shot-to-shot basis. Duration of the HPM pulse (FWHM) also varies from 52 ns to 94 ns for different shots.  相似文献   

20.
Highly efficient continuous-wave and acousto-optically Q-switched laser emission in Nd:GdVO4 crystal, end-pumped at 879 nm into the laser emitting level, are reported. A maximum cw output power of 13.3 W is obtained, corresponding to the slope efficiency of 74.6% in absorbed power; an average output power of 12.1 W, a pulse width of 20.3 ns and a peak power of about 6 kW are reached at 100 kHz in A-O Q-switched operation. PACS  42.55.-f; 42.55.Xi; 42.60.Gd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号