共查询到5条相似文献,搜索用时 0 毫秒
1.
Aditya Sharma K. D. Verma Mayora Varshney Devendra Singh Moti Singh K. Asokan 《辐射效应与固体损伤》2013,168(12):930-937
In this paper, we present the impact of swift heavy ion beam irradiation on the structural, optical and electronic properties of SnO2 thin films. Thin films were deposited using the pulsed laser deposition technique on Al2O3 substrates. Atomic force microscopy, X-ray diffraction, UV–visible absorption and temperature-dependent resistivity measurements were performed to explore the morphological, structural, optical and electronic properties of the as-deposited and irradiated samples. The peak intensity of the (200) peak was found to decrease monotonously with increasing irradiation fluence. The band gap energy of the 1×1011 ion/cm2 irradiated sample was found to increase. The electrical resistivity of the samples showed a continuous increase with the irradiation fluence. 相似文献
2.
Present work focuses on the effect of swift heavy ion (SHI) irradiation of 100 MeV F7+ ions by varying the fluencies in the range of 1 × 1012 to 1 × 1013 ions/cm2 on the morphological, structural and optical properties of polycrystalline thin films of Ga10Se90-xAlx (x = 0, 5). Thin films of ~300 nm thickness were deposited on cleaned Al2O3 substrates by thermal evaporation technique. X-ray diffraction pattern of investigated thin films shows the crystallite growth occurs in hexagonal phase structure for Ga10Se90 and tetragonal phase structure for Ga10Se85Al5. The further structural analysis carried out by Raman spectroscopy and scanning electron microscopy verifies the defects or disorder of the investigated material increases after SHI irradiation. The optical parameters absorption coefficient (α), extinction coefficient (K), optical band gap (Eg) and Urbach’s energy (EU) are determined from optical absorption spectra data measured from spectrophotometry in the wavelength range 200–1100 nm. It was found that the values of absorption coefficient and extinction coefficient increase while the value of optical band gap decreases with the increase in ion fluence. This post irradiation change in the optical parameters was interpreted in terms of bond distribution model. 相似文献
3.
4.
The self-standing films of polymethyl methacrylate (PMMA) were irradiated under vacuum with 50?MeV lithium (Li3+) and 80?MeV carbon (C5+) ions to the fluences of 3?×?1014, 1?×?1015, 1?×?1016 and 1?×?1017 ions µm?2. The pristine and irradiated samples of PMMA films were studied by using ultraviolet–visible (UV–Vis) spectrophotometry, Fourier transform infrared, X-ray diffractrometer and atomic force microscopy. With increasing ion fluence of swift heavy ion (SHI), PMMA suffers degradation, UV–Vis spectra show a shift in the absorption band from the UV towards visible, attributing the formation of the modified system of bonds. Eg and Ea decrease with increasing ion fluence. The size of crystallite and crystallinity percentage decreases with increasing ion fluence. With SHI irradiation, the intensity of IR bands and characteristic bands of different functional groups are found to shift drastically. The change in (Eg) and (N) in carbon cluster is calculated. Shifting of the absorption band from the UV towards visible along with optical activity and as a result of irradiation, some defects are created in the polymer causing the formation of conjugated bonds and carbon clusters in the polymer, which in turn lead to the modification in optical properties that could be useful in the fabrication of optoelectronic devices, gas sensing, electromagnetic shielding and drug delivery. 相似文献
5.
Oualid Berkani Khelil Latrous Hicham El Hamzaoui Bruno Capoen Mohamed Bouazaoui 《Journal of luminescence》2012,132(11):2979-2983
The photoluminescence properties of Eu3+-doped TiO2–SiO2 thin films were investigated. The films were deposited on silicon substrates by the sol–gel process using the dip-coating method. The molar ratio of TiO2 content was varied from 25% to 100%, while Europium concentration was fixed to 1%. The obtained films were calcinated at various temperatures ranging from 400 °C to 1300 °C, which allowed determining the optimal conditions for the Eu3+ luminescence. Meanwhile, the structure of TiO2–SiO2 powders, prepared in the same conditions as the films, was also studied by Raman spectroscopy. It revealed the role of Europium and SiO2 on the stabilization of the anatase phase and the importance of the silica matrix in the control of titania particle size. 相似文献