首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest. Therefore, TP-derivative compounds can be repurposed against the RNA-dependent RNA polymerase (RdRp) protein of SARS-CoV-2. In this study, a meta-analysis was performed to ensure the genomic variability and stability of the SARS-CoV-2 RdRp protein. The molecular docking of natural and synthetic TP compounds to RdRp and molecular dynamic (MD) simulations were performed to analyse the dynamic behaviour of TP compounds at the active site of the RdRp protein. TP compounds were also docked against other non-structural proteins (NSP1, NSP2, NSP3, NSP5, NSP8, NSP13, and NSP15) of SARS-CoV-2. Furthermore, the inhibition potential of TP compounds was compared with Remdesivir and Favipiravir drugs as a positive control. Additionally, TP compounds were analysed for inhibitory activity against SARS-CoV RdRp protein. This study demonstrates that TP analogues (monomethylated triazolopyrimidine and essramycin) represent potential lead molecules for designing an effective inhibitor to control viral replication. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-CoV-2.  相似文献   

2.
The RNA helicase (non-structural protein 13, NSP13) of SARS-CoV-2 is essential for viral replication, and it is highly conserved among the coronaviridae family, thus a prominent drug target to treat COVID-19. We present here structural models and dynamics of the helicase in complex with its native substrates based on thorough analysis of homologous sequences and existing experimental structures. We performed and analysed microseconds of molecular dynamics (MD) simulations, and our model provides valuable insights to the binding of the ATP and ssRNA at the atomic level. We identify the principal motions characterising the enzyme and highlight the effect of the natural substrates on this dynamics. Furthermore, allosteric binding sites are suggested by our pocket analysis. Our obtained structural and dynamical insights are important for subsequent studies of the catalytic function and for the development of specific inhibitors at our characterised binding pockets for this promising COVID-19 drug target.

The RNA helicase (non-structural protein 13, NSP13) of SARS-CoV-2 is essential for viral replication, and it is highly conserved among the coronaviridae family, thus a prominent drug target to treat COVID-19.  相似文献   

3.
4.
Simple but robust testing assays are essential for screening and diagnosis of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in COVID-19 pandemic. Here, we described a chemiluminescent imaging assay (CLIA) for sensitive and convenient detection of SARS-CoV-2 nucleocapsid protein (NP) by a target-induced enzyme activity regulation (T-EAR) strategy. The T-EAR used a pair of antibody-DNA probes to recognize SARS-CoV-2 NP and proximity-induce rolling circle amplification for mass-production of pyrophosphate to coordinate with Cu2+, which prevented the reduction of Cu2+ to Cu+ by sodium ascorbate as well as the Cu+-caused inactivation of horseradish peroxidase (HRP). The activity retention of HRP produced strong CL signal for the detection of SARS-CoV-2 NP by catalyzing the oxidation of luminol by H2O2. The T-EAR based CLIA showed a wide detection range from 1 pg/mL to 100 ng/mL (13 fM to 1.3 nM) with the requirement of only 0.75 μL of sample. This CLIA had advantages of good sensitivity, simple wash-free operation, acceptable accuracy, and high-throughput imaging detection, displaying potential applicability in screening assay of COVID-19 infection.  相似文献   

5.
Predicting RNA secondary structure using evolutionary history can be carried out by using an alignment of related RNA sequences with conserved structure. Accurately determining evolutionary substitution rates for base pairs and single stranded nucleotides is a concern for methods based on this type of approach. Determining these rates can be hard to do reliably without a large and accurate initial alignment, which ideally also has structural annotation. Hence, one must often apply rates extracted from other RNA families with trusted alignments and structures. Here, we investigate this problem by applying rates derived from tRNA and rRNA to the prediction of the much more rapidly evolving 5'-region of HIV-1. We find that the HIV-1 prediction is in agreement with experimental data, even though the relative evolutionary rate between A and G is significantly increased, both in stem and loop regions. In addition we obtained an alignment of the 5' HIV-1 region that is more consistent with the structure than that currently in the database. We added randomized noise to the original values of the rates to investigate the stability of predictions to rate matrix deviations. We find that changes within a fairly large range still produce reliable predictions and conclude that using rates from a limited set of RNA sequences is valid over a broader range of sequences.  相似文献   

6.
7.
Changes in the conformation of the units within the peptide chain are the elementary processes in the folding of a protein into its native three-dimensional structure. Even a few years ago protein folding in vivo was considered to be an autonomous process not requiring the help of enzymes or auxiliary substances. Recently an increasing number of proteins that assist in the folding process have been found; these include enzymes that catalyze conformational interconversions. The cis/trans isomerization of the petptide bond N-terminal to a praline residue is catalyzed by peptidyl-prolyl cis/trans isomerases (PPIases). Two families of these ubiquitous and phylogenetically highly conserved enzymes are known, the cyclophilins and FK506-binding proteins. Their catalytic activity is extremely highmdash;the rate constants for the bimolecular reactions they catalyze approach the diffusion-controlled limit for enzyme-substrate reactions. These enzymes increase the rate of isomerization in oligopeptides as well as in intermediate in protein folding. It is not yet known which structural units in the cell serve as substrates and exactly which reactions are catalyzed. However, these isomerases have been shown to interact with the heat shock proteins of the nonactivated steroid receptors and with the gag polyprotein of the AIDS HIV-1 virus. The immunosuppressive agents cyclosporine A and FK506 are highly effective inhibitors for PPIases. Surprisingly these compounds affect the signal cascade of T cells but not through enzyme inhibition; the inhibitor-enzyme complexes themselves are the active agents. These complexes exhibit properties not displayed by the individual components and thus are able to affect other cellular components. The current model of the suppression of the antigen- and mitogen-stimulated clonal expansion of T cells is presented here.  相似文献   

8.
The (βα)(8)-barrel is among the most ancient, frequent, and versatile enzyme structures. It was proposed that modern (βα)(8)-barrel proteins have evolved from an ancestral (βα)(4)-half-barrel by gene duplication and fusion. We explored whether the mechanism of protein folding has remained conserved during this long-lasting evolutionary process. For this purpose, potential primordial (βα)(8)-barrel proteins were constructed by the duplication of a (βα)(4) element of a modern (βα)(8)-barrel protein, imidazole glycerol phosphate synthase (HisF), followed by the optimization of the initial construct. The symmetric variant Sym1 was less stable than HisF and its crystal structure showed disorder in the contact regions between the half-barrels. The next generation variant Sym2 was more stable than HisF, and the contact regions were well resolved. Remarkably, both artificial (βα)(8)-barrels show the same refolding mechanism as HisF and other modern (βα)(8)-barrel proteins. Early in folding, they all equilibrate rapidly with an off-pathway species. On the productive folding path, they form closely related intermediates and reach the folded state with almost identical rates. The high energy barrier that synchronizes folding is thus conserved. The strong differences in stability between these proteins develop only after this barrier and lead to major changes in the unfolding rates. We conclude that the refolding mechanism of (βα)(8)-barrel proteins is robust. It evolved early and, apparently, has remained conserved upon the diversification of sequences and functions that have taken place within this large protein family.  相似文献   

9.
Ribosome-inactivating proteins, a family of highly cytotoxic proteins, interfere with protein synthesis by depurinating a specific adenosine residue within the conserved α-sarcin/ricin loop of eukaryotic ribosomal RNA. Besides being biological warfare agents, certain RIPs have been promoted as potential therapeutic tools. Monitoring their deglycosylation activity and their inhibition in real time have remained, however, elusive. Herein, we describe the enzymatic preparation and utility of consensus RIP hairpin substrates in which specific G residues, next to the depurination site, are surgically replaced with tzG and thG, fluorescent G analogs. By strategically modifying key positions with responsive fluorescent surrogate nucleotides, RIP-mediated depurination can be monitored in real time by steady-state fluorescence spectroscopy. Subtle differences observed in preferential depurination sites provide insight into the RNA folding as well as RIPs’ substrate recognition features.  相似文献   

10.
New Schiff base ligands (6–9) derived from 5-amino-4-phenyl-4H-1,2,4-triazole-3-thiol 1 and substituted benzaldehydes (2–5) as well as their metal complexes with Cu(II), Fe(II), Au(III), and Mn(II) (12–17) have been synthesized. A new benzothiazole derivative (11) was prepared from coupling of 7 with N-(benzothiazol-2-yl)-2-chloroacetamide 10. Their spectral properties were investigated. The newly designed and synthesized Schiff base ligands and the metal complexes were assayed for anti-HIV-1 and HIV-2 activity by examination of their inhibition of HIV-induced cytopathogenicity in MT-4 cells. Compounds 11 and 16 were found to be the most active inhibitors in cell culture (EC50 = 12.2 μg/mL (SI = 4) and > 2.11 μg/mL (SI = > 1), respectively) against HIV-1, whereas 11 showed inhibition against HIV-2 of EC50 > 10.2 μg/mL with SI = 9, which provided a good lead for further optimization.  相似文献   

11.
In 2020, the world tried to combat the corona virus (COVID-19) pandemic. A proven treatment method specific to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is still not found. In this study, seven new antiviral compounds were designed for COVID-19 treatment. The ability of these compounds to inhibit COVID-19’s RNA processing was calculated by the molecular docking study. It has been observed that the compounds can have high binding affinities especially against NSP12 (between -9.06 and -8.00 kcal/mol). The molecular dynamics simulation of NSP12-ZG 7 complex proved the stability of interaction. The synthesis of two most active molecules was performed by one-pot reaction and characterized by FT-IR, 1H-NMR, 13C-NMR, and mass spectroscopy. The compounds presented with their synthesis are inhibitory core structures against SARS-CoV-2 infection.  相似文献   

12.
13.
The HIV-1 nucleocapsid (NCp7), structurally defined by zinc-binding domains, participates in crucial stages of the HIV-1 lifecycle and is mutationally nonpermissive, making it an attractive anti-HIV target. Mode of action studies have shown that the secondary structure and activity of NCp7 can be disrupted by acyl transfer from N-2-mercaptobenzoyl-amino amides. We have developed an improved one-pot reaction that affords N-2-mercaptobenzoyl-amino acids on multi-gram scales. This synthetic route allows for rapid modular construction and has greatly expanded the scope of easily accessible potential NCp7 inhibitors.  相似文献   

14.
The SARS-CoV-2 main protease (Mpro) is essential for replication of the virus responsible for the COVID-19 pandemic, and one of the main targets for drug design. Here, we simulate the inhibition process of SARS-CoV-2 Mpro with a known Michael acceptor (peptidyl) inhibitor, N3. The free energy landscape for the mechanism of the formation of the covalent enzyme-inhibitor product is computed with QM/MM molecular dynamics methods. The simulations show a two-step mechanism, and give structures and calculated barriers in good agreement with experiment. Using these results and information from our previous investigation on the proteolysis reaction of SARS-CoV-2 Mpro, we design two new, synthetically accessible N3-analogues as potential inhibitors, in which the recognition and warhead motifs are modified. QM/MM modelling of the mechanism of inhibition of Mpro by these novel compounds indicates that both may be promising candidates as drug leads against COVID-19, one as an irreversible inhibitor and one as a potential reversible inhibitor.

QM/MM simulations identify the mechanism of reaction of N3, a covalent peptidyl inhibitor of SARS-CoV-2 main protease. Modelling of two novel proposed compounds, B1 and B2, suggests that reversibility of covalent inhibition could be tailored.  相似文献   

15.
RNA molecules participate in many important biological processes, and they need to fold into well-defined secondary and tertiary structures to realize their functions. Like the well-known protein folding problem, there is also an RNA folding problem. The folding problem includes two aspects: structure prediction and folding mechanism. Although the former has been widely studied, the latter is still not well understood. Here we present a deep reinforcement learning algorithms 2dRNA-Fold to study the fastest folding paths of RNA secondary structure. 2dRNA-Fold uses a neural network combined with Monte Carlo tree search to select residue pairing step by step according to a given RNA sequence until the final secondary structure is formed. We apply 2dRNA-Fold to several short RNA molecules and one longer RNA 1Y26 and find that their fastest folding paths show some interesting features. 2dRNA-Fold is further trained using a set of RNA molecules from the dataset bpRNA and is used to predict RNA secondary structure. Since in 2dRNA-Fold the scoring to determine next step is based on possible base pairings, the learned or predicted fastest folding path may not agree with the actual folding paths determined by free energy according to physical laws.  相似文献   

16.
17.
18.
Molecular dynamics (MD) simulations and free energy component analysis have been performed to evaluate the molecular origins of the 5.5 kcal/mol destabilization of the complex formed between the N-terminal RNP domain of U1A and stem loop 2 of U1 snRNA upon mutation of a conserved aromatic residue, Phe56, to Ala. MD simulations, including counterions and water, have been carried out on the wild type and Phe56Ala peptide-stem loop 2 RNA complexes, the free wild type and Phe56Ala peptides, and the free stem loop 2 RNA. The MD structure of the Phe56Ala-stem loop 2 complex is similar to that of the wild type complex except the stacking interaction between Phe56 and A6 of stem loop 2 is absent and loop 3 of the peptide is more dynamic. However, the MD simulations predict large changes in the structure and dynamics of helix C and increased dynamic range of loop 3 for the free Phe56Ala peptide compared to the wild type peptide. Since helix C and loop 3 are highly variable regions of RNP domains, this indicates that a significant contribution to the reduced affinity of the Phe56Ala peptide for RNA results from cooperation between highly conserved and highly variable regions of the RNP domain of U1A. Surprisingly, these structural effects, which are manifested as cooperative free energy changes, occur in the free peptide, rather than in the complex, and are revealed only by study of both the initial and final states of the complexation process. Free energy component analysis correctly accounts for the destabilization of the Phe56Ala-stem loop 2 complex, and indicates that approximately 80% of the destabilization is due to the loss of the stacking interaction and approximately 20% is due to differences in U1A adaptation.  相似文献   

19.
The biological function of the aspartic protease from HIV-1 has recently been related to the conformational flexibility of its structural scaffold. Here, we use a multistep strategy to investigate whether the same mechanism affects the functionality in the pepsin-like fold. (i) We identify the set of conserved residues by using sequence-alignment techniques. These residues cluster in three distinct regions: near the cleavage-site cavity, in the four beta-sheets cross-linking the two lobes, and in a solvent-exposed region below the long beta-hairpin in the N-terminal lobe. (ii) We elucidate the role played by the conserved residues for the enzymatic functionality of one representative member of the fold family, the human beta-secretase, by means of classical molecular dynamics (MD). The conserved regions exhibit little overall mobility and yet are involved into the most important modes of structural fluctuations. These modes influence the substrate-catalytic aspartates distance through a relative rotation of the N- and C-terminal lobes. (iii) We investigate the effects of this modulation by estimating the reaction free energy at different representative substrate/enzyme conformations. The activation free energy is strongly affected by large-scale protein motions, similarly to what has been observed in the HIV-1 enzyme. (iv) We extend our findings to all other members of the two eukaryotic and retroviral fold families by recurring to a simple, topology-based, energy functional. This analysis reveals a sophisticated mechanism of enzymatic activity modulation common to all aspartic proteases. We suggest that aspartic proteases have been evolutionarily selected to possess similar functional motions despite the observed fold variations.  相似文献   

20.
Top7 is a de novo designed protein with atomic level accuracy and shows a folded structure not found in nature. Previous studies showed that the folding of Top7 is not cooperative and involves various folding intermediate states. In addition, various fragments of Top7 were found to fold on their own in isolation. These features displayed by Top7 are distinct from those of naturally occurring proteins of a similar size and suggest a rough folding energy landscape. However, it remains unknown if and how the intra-polypeptide chain interactions among the neighboring sequences of Top7 affect the folding of these Top7 fragments. Here we used single-molecule optical tweezers to investigate the folding–unfolding pathways of full length Top7 as well as its C-terminal fragment (CFr) in different sequence environments. Our results showed that the mechanical folding of Top7 involves an intermediate state that likely involves non-native interactions/structure. More importantly, we found that the folding of CFr is entirely dependent upon its sequence context in which it is located. When in isolation, CFr indeed folds into a cooperative structure showing near-equilibrium unfolding–folding transitions at ∼6.5 pN in OT experiments. However, CFr loses its autonomous cooperative folding ability and displays a folding pathway that is dependent on its interactions with its neighboring sequence/structure. This context-dependent folding dynamics and pathway of CFr are distinct from those of naturally occurring proteins and highlight the critical importance of intra-chain interactions in shaping the overall energy landscape and the folding pathway of Top7. These new insights may have important implications on the de novo design of proteins.

Optical tweezers experiments reveal that the folding of the C-terminal fragment of Top7 (cFr) is context-dependent. Depending on its neighboring sequence, cFr shows very different folding pathways and folding kinetics.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号