首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 497 毫秒
1.
Single-phase perovskite structure Pb1−xBaxTiO3 thin films (x=0.30, 0.50 and 0.70) were deposited on Pt/Ti/SiO2/Si substrates by the spin-coating technique. The dielectric study reveals that the thin films undergo a diffuse type ferroelectric phase transition, which shows a broad peak. An increase of the diffusivity degree with the increasing Barium contents was observed, and it was associated to a grain decrease in the studied composition range. The temperature dependence of the phonon frequencies was used to characterize the phase transition temperatures. Raman modes persist above tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of breakdown of the local cubic symmetry by chemical disorder. The absence of a well-defined transition temperature and the presence of broad bands in some interval temperature above FE-PE phase transition temperature suggested a diffuse type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. The leakage current density of the PBT thin films was studied at different temperatures and the data follow the Schottky emission model. Through this analysis the Schottky barrier height values 0.75, 0.53 and 0.34 eV were obtained to the PBT70, PBT50 and PBT30 thin films, respectively.  相似文献   

2.
(Pb1? x Ba x )ZrO3 ceramics for the composition range 0?≤?x?≤?0.30 were prepared by the mixed oxide solid state reaction method. Phase transition was studied by dielectric and dilatometric measurements. The ferroelectric to paraelectric phase transition temperature was progressively shifted to a lower temperature by replacing lead with barium. The x?=?0.20 sample showed the maximum dielectric constant of 16,300 at the transition temperature. For compositions 0?≤?x?≤?0.075, the antiferroelectric to ferroelectric phase transition exhibited a large linear thermal expansion. However, the antiferroelectric to ferroelectric phase transition did not exist for 0.10?≤?x?≤?0.30 samples. A phase diagram for PBZ ceramics prepared by the conventional mixed oxide method was also present.  相似文献   

3.
Pb0.97La0.02(Zr0.85Sn0.13Ti0.02)O3 (PLZST 2/85/13/2) antiferroelectric thin films were deposited on Pt(111)/Ti/SiO2/Si and LaNiO3(LNO)/SiO2/Si substrates through a modified sol-gel process. The phase structure and microstructure of PLZST 2/85/13/2 antiferroelectric thin films were analysed by x-ray diffraction (XRD), scanning electron microcopy (SEM) and field-emission SEM (FE-SEM). The antiferroelectric nature of the PLZST 2/85/13/2 thin films on two electrodes was demonstrated by the C-V (capacitance-voltage) and P-E (polarization-electric field) measurement. The maximum polarizations for PLZST 2/85/13/2 films on Pt and LNO electrodes were 42 and 18 μC/cm2, respectively. The temperature dependence of the dielectric property of the PLZST 2/85/13/2 films was measured under different dc electric fields. Also, the phase transformation of the PLZST 2/85/13/2 films was studied in detail as a function of temperature and dc electric field.  相似文献   

4.
(Pb0.87La0.02Ba0.1)(Zr0.7Sn0.3−x Ti x )O3 (PLBZST, 0.06≤x≤0.09) antiferroelectric ceramics were fabricated by conventional solid state reaction process, and their ferroelectric, dielectric, and pyroelectric properties were systemically investigated. PLBZST with different Ti content were all confirmed to be in an antiferroelectric phase at T=50°C, which is close to the lowest phase transition temperature. Compared with conventional FE ceramics, PLBZST antiferroelectric ceramics exhibited higher electric field induced pyroelectric coefficient (p). As the content of Ti increased from 0.06 to 0.09, the pyroelectric coefficient increased from 1000 to 6500 μC/m2K under a 500 V/mm DC bias field. The maximum pyroelectric coefficient of 8400 μC/m2K was obtained at x=0.09 when an 850 V/mm DC bias field was applied, which is far larger than that of conventional phase transition pyroelectric materials. Large pyroelectric response is beneficial for the development of infrared detectors and thermal imaging sensors.  相似文献   

5.
The structural changes in (100 ? x)Na0.5Bi0.5TiO3xBaTiO3 (0 ≤ x ≤ 10) ceramics were investigated as a function of composition and temperature by X-ray diffraction and Raman spectroscopy. As Ba concentration increases, the structure changed from rhombohedral to tetragonal (x ≥ 6.5) across a morphotropic phase boundary like phase coexistence at x ~ 5.5, which is further evidenced by phonon anomalies observed in composition-dependent Raman spectra. On heating, the disappearance of peak splits in {111} (x ≤ 5) and {200} (x ≥ 6.5) Bragg peaks and the changes in their 2θ-positions indicated temperature-driven structural changes: ferroelectric to antiferroelectric (≈Td, depolarization temperature) at 220 °C and antiferroelectric to paraelectric (rhombohedral to tetragonal) at 320 °C. In addition, Raman spectral analysis suggested that at elevated temperatures, two tetragonal phases with slightly different space groups coexisted at x ≥ 6.5 and most of the phase transition temperatures shifted towards left with increasing x.  相似文献   

6.
Na0.5Bi0.5TiO3-BaTiO3 (NBT-BT) thin films grown by pulsed laser deposition have been investigated by X-ray diffraction, scanning electron microscopy, and dielectric spectroscopy in order to clarify the role of substrate temperature on crystalline structure, grain morphology, and dielectric properties. We have shown that the structural and dielectric properties of NBT-BT thin films with composition at morphotropic phase boundary (6% BT) critically depend on the substrate temperature: small variations of this parameter induce structural changes, shifting the morphotropic phase boundary toward tetragonal or rhombohedral side. Higher deposition temperature (1000 K) favor the formation of rhombohedral phase, films deposited at 923 K and 973 K have tetragonal symmetry at room temperature. Grains morphology depends also on the deposition temperature. Atomic force micrographs show grains with square or rectangular shape in a compact structure for films grown at lower temperatures, while grains with triangular shape in a porous structure are observed for films grown at 1000 K. Dielectric spectroscopy measurements evidenced the phase transition between ferroelectric and antiferroelectric phase at 370 K. Films grown at 1000 K shown low electrical resistivity due to their porous structure. High dielectric constant values (about 800 at room temperature and 2700 at 570 K) have been obtained for films grown at temperatures up to 973 K.  相似文献   

7.
The magnitudes of the temperature hysteresis and diffuse dielectric anomaly corresponding to the transition from the antiferroelectric phase to the ferroelectric phase in PbZr1 ? x TixO3 (0.03 ≤ x ≤ 0.05) ceramics can be reversibly changed by varying the temperatures of heating and cooling in the course of thermocycling. The results obtained indicate that the antiferroelectric-ferroelectric transition in the PbZr1 ? x TixO3 ceramics materials is a smeared first-order phase transition.  相似文献   

8.
Lead-free piezoelectric ceramics (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 have been prepared by a conventional ceramics technique, and their microstructure and electrical properties have been investigated. The addition of NaSbO3 has no remarkable effect on the crystal structure within the studied doping content; however, an obvious change in microstructure took place. With increase in NaSbO3 content, the temperature from a ferroelectric to antiferroelectric phase transition increases, and the temperature for a transition from antiferroelectric phases to paraelectric phases changes insignificantly. Simultaneously, the temperature range between the rhombohedral phase transition point and the Curie temperature point becomes smaller. The piezoelectric properties significantly increase with increase in NaSbO3 content and the piezoelectric constant and electromechanical coupling factor attain maximum values of d33=160 pC/N and kp=0.333 at x=0.01. The results indicate that (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 ceramic is a promising lead-free piezoelectric candidate material.  相似文献   

9.
The effect of different concentration of Fe on the phase transition behavior of Lead ytterbium tantalate is investigated by dielectric and differential scanning calrimetry measurements. The samples are prepared through solid state reaction method and it has been found that the sintering temperature significantly lowered when the proportion of Pb(Fe1/2Ta1/2)O3 increased. It has been observed that the doping in small amounts (0≤x≤0.2) of Fe could meliorate the dielectric and ferroelectric properties. The diffuseness in the mode of phase transition increases and the phase transition temperature decreases as a function of Fe content. It is revealed that the dielectric data and heat capacity data follow a similar trend in the variation of the mode of phase transition and phase transition temperatures. The phase transition temperature values obtained from the heat capacity measurement well agreed with the values obtained from dielectric measurement.  相似文献   

10.
Dielectric and Raman scattering experiments were performed on polycrystalline Pb1-xCaxTiO3 thin films (x=0.10, 0.20, 0.30, and 0.40) as a function of temperature. The results showed no shift in the dielectric constant (K) maxima, a broadening with frequency, and a linear dependence of the transition temperature on increasing Ca2+ content. On the other hand, a diffuse-type phase transition was observed upon transforming from the cubic paraelectric to the tetragonal ferroelectric phase in all thin films. The temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of a breakdown of the local cubic symmetry due to chemical disorder. The lack of a well-defined transition temperature and the presence of broad bands in some temperature interval above the FE–PE phase transition temperature suggested a diffuse-type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. PACS 77.80.Bh; 77.55.+f; 78.30.-j; 77.80.-e; 68.55.-a  相似文献   

11.
The electrical properties and phase transition behavior of (Pb0.87La0.02Ba0.1)(Zr0.6Sn0.4−xTix)O3 solid solutions (PLBZST, 0.04≤x0.2) were investigated by the X-ray diffraction, permittivity, pyroelectric current, and P-E electric hysterisis loops. As the composition x increased from 0.04 to 0.2, the antiferroelectric ceramics (x≤0.07, AFE) with tetragonal phase changed to the ferroelectric relaxors (RFE, 0.09≤x). AFE ceramics showed a peculiar diffuse phase transition and dielectric relaxation at the low temperature (down to −100 °C) due to a frustration between AFE and FE state. With an increase in composition x, electrically field-induced AFE-FE switching field (EAFE-FE) and AFE-paraelectric (PE) phase transition temperature (Tc) are depressed in the temperature (T)-Ti composition (x) phase diagram, a FE-AFE-PE triple phase point (Ttr) with the lowest transition temperature occurred at x=0.09. The pyroelectric currents under an application of various external electric field (E) were measured to identify a T-E phase diagram of the PLBZST compound.  相似文献   

12.
The temperature and frequency dependent dielectric relaxation data and simultaneous observation of optical texture reveal co-existence of ferroelectric (SmC1) and antiferroelectric (SmCA1) phases in the pre-transition regime of the antiferroelectric liquid crystal (AFLC) sample viz. (R)-4-[1-methyl-2-(2,2,3,3,3-pentafluoropropyloxy)ethyloxy)carbonyl]phenyl 4′-decyloxybiphenyl-4-caboxylate. Interestingly, this sample shows irreversible change in the antiferroelectric to ferroelectric (AFE  FE) phase transition temperature (T0) for consecutively increasing bias field treatment in successive cycles. The lowest upper bound of the threshold field for AFE  FE transition at the boundary of the said phases is found to be ∼1 kV cm−1.  相似文献   

13.
《Solid State Communications》2002,121(6-7):329-332
Polycrystalline thin films of Ba(Sn0.1Ti0.9)O3 were deposited on Pt coated silicon substrates by pulsed excimer laser ablation technique. The room temperature dielectric constant of the Ba(Sn0.1Ti0.9)O3 films was 350 at a frequency of 100 kHz. The films showed a slightly diffused phase transition in the range of 275–340 K. The polarization hysteresis behavior confirmed the ferroelectric nature of the thin films. Remanent polarization (Pr) and saturation polarization (Ps) were 1.1 and 3.2 μC/cm2, respectively. The asymmetric capacitance–voltage curve for Ba(Sn0.1Ti0.9)O3 was attributed to the difference in the nature of the electrodes. Dispersion in both the real (εr) and imaginary (εr) parts of the dielectric constant at low frequencies with increase in temperature was attributed to space charge contribution in the complex dielectric constant.  相似文献   

14.
刘鹏  张丹 《物理学报》2011,60(1):17701-017701
采用标准电子陶瓷工艺制备了(Pb(1-3x/2)Lax)(Zr0.5Sn0.3Ti0.2)O3(PLZST,0.00≤x≤0.18)反铁电陶瓷,利用X射线衍射、不同频率下弱场介电温谱、强场下的极化强度-电场(P-E)测试研究了材料相结构和电学性能.实验结果发现,随La含量x增大,室温下材料由铁电三方相(关键词: 反铁电陶瓷 介电频率色散 相变弥散 介电弛豫  相似文献   

15.
The combination of antiferroelectric PbZrO3 (PZ) and relaxor ferroelectric Pb(Zn1/3Nb2/3)O3 was prepared via the columbite precursor method. The basic characterizations were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), linear thermal expansion, differential scanning calorimetry (DSC) techniques, dielectric spectroscopy, and hysteresis measurement. The XRD result indicated that the solid solubility limit of the (1−x)PZ–xPZN system was about x=0.40. The crystal structure of (1−x)PZ–xPZN transformed from orthorhombic to rhombohedral symmetry when the concentration of PZN was increased. A ferroelectric intermediate phase began to appear between the paraelectric and antiferroelectric phases of pure PZ, with increasing PZN content. In addition, the temperature range of the ferroelectric phase increased with increasing PZN concentration. The morphotropic phase boundary (MPB) in this system was located close to the composition, x=0.20.  相似文献   

16.
Lead zirconate titanate (PZT) films were fabricated on Pt(111)/Ti/SiO2/Si(100) using the triol sol--gel method. The effect of the pre-heating temperature on the phase transformations, microstructures, electrical properties and ferroelectric properties of the PZT thin films was investigated. Randomly-oriented PZT thin films pre-heated at 400°C for 10?min and annealed at 600°C for 30?min showed well-defined ferroelectric hysteresis loops with a remanent polarization of 26.57?µC?cm?2 and a coercive field of 115.42?kV?cm?1. The dielectric constant and dielectric loss of the PZT films were 621 and 0.0395, respectively. The microstructures of the thin films are dense, crack-free and homogeneous with fine grains about 15–20?nm in size.  相似文献   

17.
Lead-free ceramics (1?x)NaNbO3xBi0.5Li0.5TiO3 have been fabricated by an ordinary sintering technique, and their electric properties and temperature characteristics have been studied. All the ceramics possess a perovskite structure with orthorhombic symmetry, indicating that (Bi0.5Li0.5)TiO3 diffuses into NaNbO3 lattices to form a new solid solution. A low (Bi0.5Li0.5)TiO3 doping level transforms the NaNbO3 ceramics from antiferroelectric to ferroelectric. The ceramics with x ≤ 0.075 are normal ferroelectric, and the ferroelectric-paraelectric phase become diffusives with the doping level of Bi0.5Li0.5TiO3 increasing. As x increases, the Curie temperature of the ceramics decreases linearly, while the relative permittivity εr increases. 0.925NaNbO3–0.075(Bi0.5Li0.5)TiO3 ceramic exhibits the relatively large piezoelectric constant (d33 = 58 pC/N), high Curie temperature (TC = 228 °C) and good temperature stability, suggesting that the ceramics are one of new possible candidates for lead-free piezoelectric materials.  相似文献   

18.
Pure and Nb-doped Pb(Zr1−xTix)O3 (x = 0.47, 0.48, 0.50) ceramics were prepared by conventional solid-state reaction technique. Dielectric anomalies are observed in both kinds of samples near room temperature. The anomalies could be depressed by donor doping and prefer to be significant in ceramics with tetragonal crystallographic phase. Phase transition mechanism and domain wall pinning effect are proposed to explain this anomaly, and the former is considered as the dominated reason. Further results of the pyroelectric measurements confirm the existence of the ferroelectric–ferroelectric phase transition.  相似文献   

19.
The elastic, inelastic, and dielectric properties of the magnetoelectric composite xPbZr0.53Ti0.47O3-(1 ? x)Mn0.4Zn0.6Fe2O4 (PZT-MZF) are studied in the temperature range from room temperature to 673 K. The influence of the ferroelectric PZT phase on the magnetic phase transition and the magnetic MZF phase on the ferroelectric phase transition is revealed. It is established that, as the PZT content increases, the degree of diffuseness of the phase transition decreases and a gradual crossover from a pronounced relaxor behavior to a more ordered ferroelectric behavior occurs.  相似文献   

20.
This paper reports the observation of hexagonal phase of barium titanate by Mn doping and its effect on dielectric and magnetic properties. Ceramic samples of Ba0.98Zn0.02Ti1−xMnxO3 (where, x= 0.04, 0.06 and 0.08) were prepared by traditional solid-state reaction route. The hexagonal phase is stabilized in the composition Ba0.98Zn0.02Ti0.92Mn0.08O3 and a very feeble MH loop is also observed in that composition. This induced magnetism is expected due to the exchange interactions between magnetic polarons formed by oxygen vacancies with Mn ions. The dielectric constant as well as the ferroelectric to paraelectric transition temperature is systematically decreased with increasing of Mn doping concentration. Further to that, the temperature dependent dielectric constant curve is also broadened at transition temperature with increasing of Mn concentration. However, the ferroelectric to paraelectric transition temperature is well above room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号