首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of the F+H2(v=0,j=0, 1) reactions have been studied at the collision energy of 1.27 kcal/mol using a high-resolution crossed molecular beam apparatus. HF product rotational state resolved differential cross sections have been obtained at the v′=1, 2, 3 levels. The product HF(v′=2) angular distributions are predominantly backward scattered for both H2 (j=0, 1) reagents. However, the distributions of product HF(v′=2) rotational states for theF+H2(v=0,j=0) reaction are signi cantly di erent from those for the F+H2(v=0,j=1) reaction. Experimental results show that the rotational excitation of H2 produces rotationally ‘hotter’ HF(v′=2) product. In addition, the HF(v′=3) product is more likely scattered into the forward direction when the H2 reagent is populated at j=0 state, which could be attributed to a slow-down mechanism.  相似文献   

2.
We have measured the dependence of the relative integral cross section of the reaction Li + HF → LiF + H on the collision energy (excitation function) using crossed molecular beams. By varying the intersection angle of the beams from 37° to 90° we covered the energy range 25 meV ≤ E(tr) ≤ 131 meV. We observe a monotonous rise of the excitation function with decreasing energy over the entire energy range indicating that a possible translational energy threshold to the reaction is significantly smaller than 25 meV. The steep rise is quantitatively recovered by a Langevin-type excitation function based on a vanishing threshold and a mean interaction potential energy ∝R(-2.5) where R is the distance between the reactants. To date all threshold energies deduced from ab initio potentials and zero-point vibrational energies are at variance with our results, however, our findings support recent quantum scattering calculations that predict significant product formation at collision energies far below these theoretical thresholds.  相似文献   

3.
The reaction dynamics of the fluorine atom with vibrationally excited D2(v=1, v=0) was investigated using the crossed beam method. The scheme of stimulated Raman pumping was employed for preparation of vibrationally excited D2 molecules. Contribution from the reaction of spin-orbit excited F?(2P1/2) with vibrationally excited D2 was not found. Reaction of spin-orbit ground F(2P3/2) with vibrationally excited D2 was measured and DF products populated in v‘=2, 3, 4, 5 were observed. Compared with the vibrationally ground reaction, DF products from the vibrationally excited reaction of F(2P3/2)+D2(v=1, j=0) are rotationally “hotter”. Differential cross sections at four collision energies, ranging from 0.32 kcal/mol to 2.62 kcal/mol, were obtained. Backward scattering dominates for DF products in all vibrational levels at the lowest collision energy of 0.32 kcal/mol. As the collision energy increases, angular distribution of DF products gradually shifts from backward to sideway. The collision-energy dependence of differential cross section of DF(v’=5) at forward direction was also measured. Forward-scattered signal of DF(v'=5) appears at thecollision energy of 1.0 kcal/mol, and becomes dominated at 2.62 kcal/mol.  相似文献   

4.
The stereodynamics and mechanism of the F + HD(v = 0, j = 1) → HF (DF) + D (H) reactions have been thoroughly analysed at collision energies in the 0-160 meV range. Specifically, this study is focused on (i) the comparison between the stereodynamics of the collisions leading to HF and DF formation, and (ii) the stereodynamical fingerprints of the resonance that occurs at low collision energies in the HF channel and whose manifestation in the total cross section is greatly diminished for initial j > 0. While previous studies were limited to the analysis of integral cross sections (ICS), differential cross sections (DCS) and reaction probabilities, in the present work we have included the analysis of vectorial quantities such as the direction of the initial rotational angular momentum and internuclear axis, and their effect on reactivity. In particular, polarisation parameters (PP) and polarisation dependent differential cross sections (PDDCS), quantities that describe how the intrinsic HD rotational angular momentum and molecular axis polarisations contribute to reaction, are calculated and examined. The evolution of the PPs with the collision energy differs markedly between the two reaction channels. For the DF channel, the PP values are small and change very little in the energy range in which DF formation is appreciable. In contrast, rapid fluctuations in the magnitude and sign of the PPs are observed in the HF channel at low collision energies in and around the resonance. As the collision energy increases, direct (non-resonant) scattering prevails, and the various quantities are reasonably well accounted for by the QCT calculations, as in the case of the DF channel. The intrinsic directional information has been used to access the extent of control that can be achieved through polarisation of the HD molecule prior to collision. It was found that the same extrinsic preparation leads to very different outcomes on the HF channel DCS when the collision energy is close to the resonance. It is also shown that polarisation of the HD internuclear axis along the initial relative velocity enhances the effect of the resonance and allows its clear identification. Finally, the effect of different extrinsic preparations on the angle-velocity DCS is found to be strong, thus allowing considerable control of product angular distributions.  相似文献   

5.
We describe fully quantum, time-independent scattering calculations of the F+H2-->HF+H reaction, concentrating on the HF product rotational distributions in v'=3. The calculations involved two new sets of ab initio potential energy surfaces, based on large basis set, multireference configuration-interaction calculations, which are further scaled to reproduce the experimental exoergicity of the reaction. In addition, the spin-orbit, Coriolis, and electrostatic couplings between the three quasidiabatic F+H2 electronic states are included. The calculated integral cross sections are compared with the results of molecular beam experiments. At low collision energies, a significant fraction of the reaction is due to Born-Oppenheimer forbidden, but energetically allowed reaction of F in its excited (2P 1/2) spin-orbit state. As the collision energy increases, the Born-Oppenheimer allowed reaction of F in its ground (2P 3/2) spin-orbit state rapidly dominates. Overall, the calculations agree reasonably well with the experiment, although there remains some disagreement with respect to the degree of rotational excitation of the HF(v'=3) products as well as with the energy dependence of the reactive cross sections at the lowest collision energies.  相似文献   

6.
In this paper we present integral cross sections (in the 5-220 meV collision energy range) and rate constants (in the 100-300 K range of temperature) for the F+HD reaction leading to HF+D and DF+H. The exact quantum reactive scattering calculations were carried out using the hyperquantization algorithm on an improved potential energy surface which incorporates the effects of open shell and fine structure of the fluorine atom in the entrance channel. The results reproduce satisfactorily molecular beam scattering experiments as well as chemical kinetics data for both the HF and DF channels. In particular, the agreement of the rate coefficients and the vibrational branching ratios with experimental measurements is improved with respect to previous studies. At thermal and subthermal energies, the rates are greatly influenced by tunneling through the reaction barrier. Therefore exchange of deuterium is shown to be penalized with respect to exchange of hydrogen, and the isotopic branching exhibits a strong dependence on translational energy. Also, it is found that rotational excitation of the reactant HD molecule enhances the production of HF and decreases the reactivity at the D end, obtaining insight on the reaction stereodynamics.  相似文献   

7.
In a crossed molecular-beam study we have measured angular and time-of-flight distributions of the product LiF from the reaction Li + HF(upsilon = 0)-->LiF + H at various collision energies ranging from 97 to 363 meV for three markedly different rotational state distributions of HF obtained at nozzle temperatures close to 315, 510, and 850 K. Particularly, for the low and intermediate collision energies we observe significant effects of the varying j-state populations on the shape of the product angular distributions. At 315 K an additional feature appears in the angular distributions which is interpreted as being due to scattering from HF dimers. The experimental data are compared with simulations of the monomer reaction based on extensive quasiclassical trajectory calculations on a new state-of-the-art ab initio potential energy surface. We find an overall good agreement between the theoretical simulations and the experimental data for the title reaction, especially at the highest HF nozzle temperature.  相似文献   

8.
State-to-state differential and integral cross sections for the title reaction were calculated using an exact wave packet method on a recently developed ab initio potential energy surface of the first excited state HO(2)(?(2)A'). The calculation results indicate that the reaction is dominated by highly rotationally excited OH products scattered in both the forward and backward directions, consistent with the formation of a long-lived HO(2) reaction intermediate. However, a statistical model was found to overestimate the integral cross sections, due apparently to dynamical bottlenecks. In addition, a unique feature in the OH + O exit channel potential promotes rotational excitation of the departing OH product by exerting a torque force. The role of the title reaction in high temperature combustion is also discussed.  相似文献   

9.
Quasiclassical trajectory calculations have been carried out for the F+HCl reaction in three dimensions on a recent DHSN PES of the ground 1(2)A' electronic state [M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje, and D. J. Nesbitt, J. Chem. Phys. 124, 224303 (2006)]. The effects of the collision energy and the reagent initial rotational excitation on the cross sections and product polarization are studied for the v = 0 and j ≤ 10 states of HCl over a wide collision energy range. It has been found that either the collision energy or the HCl rotational excitation increase remarkably reaction cross sections. The QCT-calculated integral cross sections are in good agreement with previous QM results. A detailed study on product polarization for the title reaction is also performed. The calculated results show that the product rotational angular momentum j' is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The orientation of the HF product rotational angular momentum vector j' depends very sensitively on the collision energy and also affected by the reagent rotation. The theoretical findings and especially the roles of the collision energy and initial rotational momentum on the product polarization are discussed and reasonably explained by the HLH mass combination, the property of the PES, as well as the reactive mechanism.  相似文献   

10.
The time-dependent wave packet method has been employed to calculate the state-to-state integral cross sections and differential cross sections (DCSs) for three initial states of the title reaction on the recently constructed neural network potential energy surface. It is found that the product HBr(\begin{document}$ v' $\end{document} = 2, 3, 4) states have the dominated population in the entire energy region considered here, indicating an inverted HBr vibrational state distribution. More than half of the available energy ends up as product internal motion, and most of which goes into the vibrational motion. Our calculations show that initial rotational excitation of Br\begin{document}$ _2 $\end{document} has little effect on the product ro-vibrational state distributions and DCSs of the reaction. While the initial vibrational excitation has some influences. The initial vibrational excitation to \begin{document}$ v_0 $\end{document} = 5 obviously enhance the product vibrational excitation in the low energy region. The DCSs for collision energy up to 0.5 eV at the ground and rotationally excited state are peaked in the backward direction, but the width of the angular distribution increases considerably with the increase of collision energy. For the vibrationally excited state, the DCSs are rather complicated with some strong forward scattering peaks for highly vibrationally excited products.  相似文献   

11.
We presented an experimental apparatus combining the H-atom Rydberg tagging time-of-flight technique and the laser detonation source for studying crossed beam reactions athyperthermal collision energies. The preliminary study of the F+D2→DF+D reaction at hyperthermal collision energy of 23.84 kJ/mol was performed. Two beam sources were used in this study: one is the hyperthermal F beam source produced by a laser detonation process, and the other is D2 beam source generated by liquid-N2 cooled pulsed valve. Vibrational state-resolved di erential cross sections (DCSs) of product for the title reaction were determined. From the product vibrational state-resolved DCS, it can be concluded that products DF(v'=0, 1, 2, 3) are predominantly distributed in the sideway and backward scattering directions at this collision energy. However, the highest vibrational excited product DF(v'=4), is clearly peaked in the forward direction. The probable dynamical origins for these forward scattering products were analyzed and discussed.  相似文献   

12.
A complete quantum study for the state-to-state Li + HF(v,j,m) → LiF(v',j',Ω') + H reactive collisions has been performed using a wave packet method, for different initial rotational states and helicity states of the reactants. The state-to-state differential cross section has been simulated, and the polarization of products extracted. It is found that the reactivity is enhanced for nearly collinear collisions, which produces a vibrational excitation of HF, needed to overcome the late barrier. It is also found that LiF(v' = 0) products are preferentially forward scattered, while vibrationally excited LiF(v' = 1 and 2) are backward scattered. These results are interpreted with a simple reaction mechanism, based on the late character and bent geometry of the transition state, originating from a covalent/ionic crossing, which consists of two steps: the arrival at the transition state and the dissociation. In the first step, in order to get to the saddle point some HF vibrational excitation is required, which favors head-on collisions and therefore low values of m. In the second step a fast dissociation of H atom takes place, which is explained by the ionic Li(+)F(-)H character of the bent transition state: the FH(-) is repulsive making that H depart rapidly leaving a highly rotating LiF molecule. For the higher energy analyzed, where resonances slightly contribute, the orientation and alignment of product rotational states, referred to as reactants frame (with the z-axis parallel to k), are approximately constant with the scattering angle. The alignment is close to -1, showing that j' is perpendicular to k, while starting from initial states with well defined rotational orientation, as states with pure m values, the final rotational are also oriented. It is also found that when using products frame (with the z'-axis parallel to k') the rotational alignment and orientation of products varies a lot with the scattering angle just because the z' axis changes from being parallel to anti-parallel to k when varying from θ = 0 to π.  相似文献   

13.
The quantum mechanical close-coupling formalism is applied to the study of elastic and rotationally inelastic Li+ + H2 collisions making use of the Kutzelnigg-Staemmler-Hoheisel potential energy surface. Integral and differential cross sections for j = 0 → 0 and j = 0 → 2 are obtained in the collision energy range 0.2 to 0.9 eV and for j = 1 → 1 and j = 1 → 3 at 0.6 eV. A rainbow structure is observed in both the elastic and inelastic angular distributions and a quenching of the fast oscillations is found in the cross sections for j = 1 initially compared to the case j = 0 initially. At 0.6 eV. the calculated quantum mechanical angular distributions are compared to those from a classical trajectory calculation using the same surface and to the experimental ones. The dynamics of rotational excitation in the Li+ + H2 system is contrasted to rotational excitation in systems for which the atom-diatom interaction is predominantly repulsive.  相似文献   

14.
Quasiclassical trajectory calculations have been performed for the H + H'X(v) → X + HH' abstraction and H + H'X(v) → XH + H' (X = Cl, F) exchange reactions of the vibrationally excited diatomic reactant at a wide collision energy range extending to ultracold temperatures. Vibrational excitation of the reactant increases the abstraction cross sections significantly. If the vibrational excitation is larger than the height of the potential barrier for reaction, the reactive cross sections diverge at very low collision energies, similarly to capture reactions. The divergence is quenched by rotational excitation but returns if the reactant rotates fast. The thermal rate coefficients for vibrationally excited reactants are very large, approach or exceed the gas kinetic limit because of the capture-type divergence at low collision energies. The Arrhenius activation energies assume small negative values at and below room temperature, if the vibrational quantum number is larger than 1 for HCl and larger than 3 for HF. The exchange reaction also exhibits capture-type divergence, but the rate coefficients are larger. Comparisons are presented between classical and quantum mechanical results at low collision energies. At low collision energies the importance of the exchange reaction is enhanced by a roaming atom mechanism, namely, collisions leading to H atom exchange but bypassing the exchange barrier. Such collisions probably have a large role under ultracold conditions. The calculations indicate that for roaming to occur, long-range attractive interaction and small relative kinetic energy in the chemical reaction at the first encounter are necessary, which ensures that the partners can not leave the attractive well. Large orbital angular momentum of the primary products (equivalent to large rotational excitation in a unimolecular reaction) is favorable for roaming.  相似文献   

15.
Crossed beams scattering study was carried out on the F+HD→DF+H reaction using high- resolution H-atom Rydberg tagging time-of-flight technique. Vibrational state-resolved differential cross sections were measured, with partial rotational state resolution, at eight collision energies in the range of 2.51-5.60 kJ/mol. Experimental results indicated that the product angular distributions are predominantly backward scattered. As the collision energy increases, the backward scattered peak becomes broader gradually. Dependence of product vibration branching ratios on the collision energy was also determined. The experimental results show that the DF products are highly inverted in the vibrational state distribution and the DF (v'=3) product is the most populated state. Furthermore, the DF (v'=l) product has also been observed at collision energy above 3.97 kJ/mol.  相似文献   

16.
The reagent rotational excitation effect on the stereodynamics of H+LiF→HF+Li is calcu-lated by means of the quasi-classical trajectory method on the Aguado-Paniagua2-potential energy surface (AP2-PES) constructed by Aguado et al. [J. Chem. Phys. 106, 1013 (1997)]. The angular distributions of vector correlations between products and reactants, P(?r) and P(Φr) are presented. Meanwhile, the four polarization-dependent generalized differential cross sections are computed. The results indicate that the reagent rotational quantum num-bers have impact on the vector properties of the title reaction. In addition, the reaction probability has been calculated as well.  相似文献   

17.
We report rigorous quantum dynamics studies of the Li + HF reaction using the time-dependent wavepacket approach. The dynamics study is carried out on a recent ab initio potential energy surface, and state-selected reaction probabilities and cross sections are calculated up to 0.4 eV of collision energy. Many long-lived resonances (as long as 10 ps) at low collision energies (below 0.1 eV) are uncovered from the dynamics calculation. These long-lived resonances play a dominant role in the title reaction at low collision energies (below 0.1 eV). At higher energies, the direct reaction process becomes very important. The reaction probabilities from even rotational states exhibit a different energy dependence than those from odd rotational states. Our calculated integral cross section exhibits a broad maximum near the collision energy of 0.26 eV with small oscillations superimposed on the broad envelope which is reminiscent of the underlying resonance structures in reaction probabilities. The energy dependence of the present CS cross section is qualitatively different from the simple J-shifting approximation, in which a monotonic increase of cross section with collision energy was obtained. Received: 8 January 1997 / Accepted: 14 January 1997  相似文献   

18.
李亚民  孙萍 《物理化学学报》2011,27(6):1357-1360
基于Aguado等人拟合的APW势能面(PES), 运用准经典轨线(QCT)方法, 对反应Li+HF(ν=0, j=0)→LiF+H的动力学性质进行了计算. 主要研究了不同碰撞能条件下的反应截面、转动取向、产物散射角分布和竞争反应模式等. 结果表明, 该反应存在直接提取型和间接插入型两种反应模式, 在低能量下反应以间接插入反应模式为主, 能量大于200 meV时则以直接提取反应为主.  相似文献   

19.
Time-dependent wave packet calculations were carried out to study the exchange and abstraction processes in the title reaction on the Kurosaki-Takayanagi potential energy surface (Kurosaki, Y.; Takayanagi, T. J. Chem. Phys. 2003, 119, 7838). Total reaction probabilities and integral cross sections were calculated for the reactant HBr initially in the ground state, first rotationally excited state, and first vibrationally excited state for both the exchange and abstraction reactions. At low collision energy, only the abstraction reaction occurs because of its low barrier height. Once the collision energy exceeds the barrier height of the exchange reaction, the exchange process quickly becomes the dominant process presumably due to its larger acceptance cone. It is found that initial vibrational excitation of HBr enhances both processes, while initial rotational excitation of HBr from j(0) = 0 to 1 has essentially no effect on both processes. For the abstraction reaction, the theoretical cross section at E(c) = 1.6 eV is 1.06 A(2), which is smaller than the experimental result of 3 +/- 1 A(2) by a factor of 2-3. On the other hand, the theoretical rate constant is larger than the experimental results by about a factor of 2 in the temperature region between 220 and 550 K. It is also found that the present quantum rate constant is larger than the TST result by a factor of 2 at 200 K. However, the agreement between the present quantum rate constant and the TST result improves as the temperature increases.  相似文献   

20.
The reaction dynamics of the F+H2O/D2O→HF/DF+OH/OD are investigated on an ac-curate potential energy surface (PES) using a quasi-classical trajectory method. For bothisotopomers, the hydrogen/deuterium abstraction reaction is dominated by a direct rebound mechanism over a very low “reactant-like” barrier, which leads to a vibrationally hot HF/DF product with an internally cold OH/OD companion. It is shown that the lowered reaction barrier on this PES, as suggested by high-level ab initio calculations, leads to a much better agreement with the experimental reaction cross section, but has little impact on the product state distributions and mode selectivity. Our results further indicate that rotational exci-tation of the H2O reactant leads to significant enhancement of the reactivity, suggesting a strong coupling with the reaction coordinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号