首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary: Microwave irradiation method was used for synthesis of chelating ion exchange resin derived fom Salicylicacid-Formaldehyde-Resorcinol (SFR-M). The resin was characterized by Elemental analysis, FTIR, TGA and SEM. The Broido and Horowitz-Metzger method were used to calculate the energy of activation (Ea) from TGA. The microwave assisted chelating resin has different thermal behaviour as compared to conventional resin (SFR-C). The sorption capacities of microwave SFR resin for transition metal ions are higher than conventional SFR resin. The separation of binary mixtures [Cu (II) and Zn (II)] in brass and [Ni (II) and Cd (II)] were successfully carried out using Kd value.  相似文献   

2.
Prabhakaran D  Subramanian MS 《Talanta》2003,59(6):1227-1236
A new chelating polymeric sorbent was developed by functionalizing Amberlite XAD-16 with 1,3-dimethyl-3-aminopropan-1-ol via a simple condensation mechanism. The newly developed chelating matrix offered a high resin capacity and faster sorption kinetics for the metal ions such as Mn(II), Pb(II), Ni(II), Co(II), Cu(II), Cd(II) and Zn(II). Various physio-chemical parameters like pH-effect, kinetics, eluant volume and flow rate, sample breakthrough volume, matrix interference effect on the metal ion sorption have been studied. The optimum pH range for the sorption of the above mentioned metal ions were 6.0–7.5, 6.0–7.0, 8.0–8.5, 7.0–7.5, 6.5–7.5, 7.5–8.5 and 6.5–7.0, respectively. The resin capacities for Mn(II), Pb(II), Ni(II), Co(II), Cu(II), Cd(II) and Zn(II) were found to be 0.62, 0.23, 0.55, 0.27, 0.46, 0.21 and 0.25 mmol g−1 of the resin, respectively. The lower limit of detection was 10 ng ml−1 for Cd(II), 40 ng ml−1 for Mn(II) and Zn(II), 32 ng ml−1 for Ni(II), 25 ng ml−1 for Cu(II) and Co(II) and 20 ng ml−1 for Pb(II). A high preconcentration value of 300 in the case of Mn(II), Co(II), Ni(II), Cu(II),Cd(II) and a value of 500 and 250 for Pb(II) and Zn(II), respectively, were achieved. A recovery of >98% was obtained for all the metal ions with 4 M HCl as eluting agent except in the case of Cu(II) where in 6 M HCl was necessary. The chelating polymer showed low sorption behavior to alkali and alkaline earth metals and also to various inorganic anionic species present in saline matrix. The method was applied for metal ion determination from water samples like seawater, well water and tap water and also from green leafy vegetable, from certified multivitamin tablets and steel samples.  相似文献   

3.
The complex structures and interactions of sulfur‐containing chelating resin poly[4‐vinylbenzyl‐(2‐hydroxyethyl)]sulfide (PVBS), poly[4‐vinylbenzyl‐(2‐hydroxyethyl)]sulfoxide (PVBSO), and poly[4‐vinylbenzyl‐(2‐hydroxyethyl)]sulfone (PVBSO2) with divalent metal chlorides (Cu(II), Ni(II), Zn(II), Cd(II), and Pd(II)) were investigated theoretically. Results indicate that PVBS tends to coordinate with metal ions by sulfur and oxygen atoms forming five‐membered ring chelating complexes; while PVBSO and PVBSO2 prefer to interact with metal ions by the oxygen atom of the sulfoxide or sulfone and hydroxyl group to form six‐membered ring chelating compounds. Theoretical calculations reveal that sulfur atoms of PVBS are the main contributor when coordinate with metal ions, while oxygen atoms also take part in the coordination with Cu(II), Zn(II), and Cd(II). As for PVBSO, the oxygen atoms of sulfoxide group play a key role in the coordination, but sulfur and hydroxyl oxygen also participate in the coordination. Similarly, sulfone group oxygen atoms of PVBSO2 dominate the coordination of Ni(II), Cu(II), and Pd(II), while the affinities of Zn(II) and Cd(II) are mainly attributed to the hydroxyl oxygen atoms. The computational results are in good agreement with the XPS analysis. Combined the theoretical and experimental results, further understanding of the structural information on the complexes was achieved and the adsorption mechanism was confirmed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

4.
Gopalan Venkatesh 《Talanta》2007,71(1):282-287
Amberlite XAD-16 was loaded with 4-{[(2-hydroxyphenyl)imino]methyl}-1,2-benzenediol (HIMB) via azo linker and the resulting resin AXAD-16-HIMB explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II) in the pH range 5.0-8.0. The sorption capacity was found between 56 and 415 μmol g−1 and the preconcentration factors from 150 to 300. Tolerance limits for foreign species are reported. The kinetics of sorption is not slow, as t1/2 is ≤15 min. The chelating resin can be reused for seventy cycles of sorption-desorption without any significant change (<2.0%) in the sorption capacity. The limit of detection values (blank + 3 s) are 1.72, 1.30, 2.56, 2.10, 0.44, 2.93, 2.45 and 3.23 μg l−1 for Zn, Mn, Ni, Pb, Cd, Cu, Fe and Co, respectively. The enrichment on AXAD-16-HIMB coupled with flame atomic absorption spectrometry (FAAS) monitoring is used to determine the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in powdered milk samples.  相似文献   

5.
A new chelating resin, 1-(2-pyridylazo)-2-naphthol (PAN) coated Amberlite XAD-1180 (AXAD-1180), was prepared and used for the preconcentration of Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) ions prior to their determination by flame atomic absorption spectrometry (FAAS). The optimum pH for simultaneous retention of the elements and the best elution means for their simultaneous elution were pH 9.5 and 3 M HNO3, respectively. The sorption capacity of the resin was found to be 5.3 mg/g for Cd and 3.7 mg/g for Ni. The detection limits for Cd(II), Mn(II), Ni(II), Pb(II) and Zn(II) were 0.7, 10, 3.1, 29 and 0.8 μg/L, respectively. The effects of interfering ions for quantitative sorption of the metal ions were investigated. The preconcentration factors of the method were in the range of 10–30. The recoveries obtained were quantitative (≥95%). The standard reference material (GBW07605 Tea sample) was analysed for accuracy of the described method. The proposed method was successfully applied to the analysis of various water, urea fertilizer and tea samples. The article is published in the original.  相似文献   

6.
Morin was successful as a chemical modifier to improve the reactivity of the nanometer SiO2 surface in terms of selective binding and extraction of heavy metal ions. This new functionalized nanometer SiO2 (nanometer SiO2-morin) was used as an effective sorbent for the solid-phase extraction (SPE) of Cd(II), Cu(II), Ni(II), Pb(II), Zn(II) in solutions prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using static and dynamic procedures in detail. The pH 4.0 was chosen as the optimum pH value for the separation of metal ions on the newly sorbent. Complete elution of the adsorbed metal ions from the nanometer SiO2-morin was carried out using 2.0 mL of 0.5 mol L−1 of HCl. Common coexisting ions did not interfere with the separation and determination at pH 4.0. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 22.36, 36.8, 40.37, 33.21 and 25.99 mg metal/g SiO2-morin for Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The time for 95% sorption for Cu(II) and Ni(II) and 70% sorption for Cd(II), Pb(II) and Zn(II) was less than 2 min. The relative standard deviation (RSD) of the method under optimum conditions was lower than 5.0% (n = 11). The procedure was validated by analyzing the certified reference river sediment material (GBW 08301, China), the results obtained were in good agreement with standard values. The nanometer SiO2-morin was successfully employed in the separation and preconcentration of trace Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) from the biological and natural water samples yielding 75-folds concentration factor.  相似文献   

7.
Venkatesh G  Singh AK 《Talanta》2005,67(1):187-194
2-{[1-(3,4-Dihydroxyphenyl)methylidene]amino}benzoic acid (DMABA) was loaded on Amberlite XAD-16 (AXAD-16) via azo linker and the resulting resin AXAD-16-DMABA explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II). The optimum pH values for extraction are 6.5-7.0, 5.0-6.0, 5.5-7.5, 5.0-6.5, 6.5-8.0, 5.5-7.0, 4.0-5.0 and 6.0-7.0, respectively. The sorption capacity was found between 97 and 515 μmol g−1 and the preconcentration factors from 100 to 450. Tolerance limits for foreign species are reported. The kinetics of sorption is fast as t1/2 is ≤5 min. The chelating resin can be reused for 50 cycles of sorption-desorption without any significant change (<1.5%) in the sorption capacity. The limit of detection values (blank +3 s) are 1.12, 1.38, 1.76, 0.67, 0.77, 2.52, 5.92 and 1.08 μg L−1 for Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II), respectively. The enrichment on AXAD-16-DMABA coupled with monitoring by flame atomic absorption spectrometry (FAAS) is used to determine all the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in milk samples.  相似文献   

8.
A new polychelatogen, AXAD-16-1,2-diphenylethanolamine, was developed by chemically modifying Amberlite XAD-16 with 1,2-diphenylethanolamine to produce an effective metal-chelating functionality for the preconcentration of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) and their determination by flame atomic absorption spectrometry. Various physiochemical parameters that influence the quantitative preconcentration and recovery of metal were optimized by both static and dynamic techniques. The resin showed superior extraction efficiency with high-metal loading capacity values of 0.73, 0.80, 0.77, 0.87, 0.74, and 0.81 mmol/g for Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The system also showed rapid metal-ion extraction and stripping, with complete saturation in the sorbent phase within 15 min for all the metal ions. The optimum condition for effective metal-ion extraction was found to be a neutral pH, which is a great advantage in the preconcentration of trace metal ions from natural water samples without any chemical pretreatment of the sample. The resin also demonstrated exclusive ion selectivity toward targeted metal ions by showing greater resistivity to various complexing species and more common metal ions during analyte concentration, which ultimately led to high preconcentration factors of 700 for Cu(II); 600 for Mn(II), Ni(II), and Zn(II); and 500 for Cd(II) and Pb(II), arising from a larger sample breakthrough volume. The lower limits of metal-ion detection were 7 ng/mL for Mn(II) and Ni(II); 5 ng/mL for Cu(II), Zn(II), and Cd(II), and 10 ng/mL for Pb(II). The developed resin was successful in preconcentrating metal ions from synthetic and real water samples, multivitamin-multimineral tablets, and curry leaves (Murraya koenigii) with relative standard deviations of < or = 3.0% for all analytical measurements, which demonstrated its practical utility.  相似文献   

9.
A chelating resin based on modified poly (styrene‐alt‐maleic anhydride) with 3‐aminobenzoic acid was synthesized. This modified resin was further reacted by 1,2‐diaminoethane or 1,3‐diaminopropane in the presence of ultrasonic irradiation to prepare tridimensional chelating resin for the removal of heavy metal ions from aqueous solutions. The adsorption behavior of Fe(II), Cu(II), Zn(II) and Pb(II) ions was investigated by synthesized chelating resins in various pH. Among the synthesized resins, CSMA‐AB1 and CSMA‐AB2 demonstrated a high affinity for the selected metal ions compared to SMA‐AB, and the order of removal percentage changes as follow: Fe(II) > Cu(II) > Zn(II) > Pb(II). The adsorption of all metal ions in acidic medium was moderate, and it was favored at the pH value of 6 and 7. Also, the prepared resins were examined for removal of metal ions from industrial wastewater and were shown to have a very efficient adsorption in the case of Cu(II), Fe(II) and Pb(II); however, the adsorption of Zn(II) was lower than others. The resin was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction analysis and thermogravimetric analysis/derivative thermogravimetry. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Tewari PK  Singh AK 《Talanta》2001,53(4):823-833
A new chelating resin is prepared by coupling Amberlite XAD-2 with pyrocatechol through an azo spacer, characterized (by elemental analysis, IR and TGA) and studied for preconcentrating Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) using flame atomic absorption spectrometry (FAAS) for metal monitoring. The sorption is quantitative in the pH range 3.0-6.5, whereas quantitative desorption occurs instantaneously with 2 M HCl or HNO(3) The sorption capacity has been found to be in the range 0.023-0.092 mmol g(-1) of resin. The loading half time (t(1/2)) is 1.4, 4.8, 1.6, 3.2, 2.3 and 1.8 min, respectively for Cd, Co, Cu, Fe, Ni and Zn. The tolerance limits of electrolytes NaCl, NaBr, NaNO(3), Na(2)SO(4) and Na(3)PO(4) in the sorption of all the six metal ions (0.2 mug ml(-1)) are reported. The Mg(II) and Ca(II) are tolerable with each of them (0.2 mug ml(-1)) up to a concentration level of 0.01-1.0 M. The enrichment factor has been found to be 200 except for Fe and Cu for which the values are 80 and 100, respectively. The lowest concentration of metal ion for quantitative recovery is 5, 10, 20, 25, 10 and 10 mug l(-1) for Cd, Co, Cu, Fe, Ni and Zn, respectively. The simultaneous determination of all these metal ions is possible and the method has been applied to determine all the six metal ions in tap and river water samples (RSD相似文献   

12.
Pathak R  Rao GN 《Talanta》1997,44(8):1447-1453
A poly[styrene-co-(divinylbenzene)] resin (XAD-4) functionalized with 1-hydrazinophthalazine ligand has been prepared and its analytical properties investigated. The pH dependence of sorption of metal ion on the resin has been determined for Cu(II), Ni(II), Co(II), Zn(II), Cd(II), Pb(II), Fe(III) and Cr(III). Trace amounts of these metal ions were quantitatively retained on the resin and recovered by eluting with 1 mol l(-1) hydrochloric acid. The resin was found to be selective for Fe(III) and its separation from other metal ions was carried out effectively. Metal ions concentrations were determined using AAS.  相似文献   

13.
A new class of chelating polymers using Amberlite XAD-16 (AXAD-16) modified with (N-(3,4-dihydroxy)benzyl)-4-amino,3-hydroxynapthalene-1-sulphonic acid has been developed based on dual mechanism bifunctional polymers, for the extraction of transition and post-transition metal ions. The optimum pH conditions for the quantitative sorption of metal ions were studied. The developed method showed superior extraction qualities with high metal loading capacities of 71, 85, 182, 130 and 46 mg g−1 for Ni(II), Cd(II), Pb(II), Cu(II) and Co(II), respectively. The rate of metal ion uptake i.e. kinetics studies performed under optimum levels showed a time duration of <5 min except for Co(II) which required 20 min, for complete metal ion saturation. Desorption of metal ions were effective with 15 ml of 2 M HCl/HNO3 prior to detection using flame atomic absorption spectrophotometer. The chelating polymer was highly ion-selective in nature even in the presence of large concentrations of alkali and alkaline earth metal ions, with a high preconcentrating ability for the metal ions of interest. The developed chelating matrix was tested on its utility with synthetic and real samples like river/sea/tap/well water samples and also with multivitamin/mineral tablets, showed R.S.D. values of <2.5% reflecting on the accuracy and reproducibility of data using the newly developed resin matrix.  相似文献   

14.
Kumar M  Rathore DP  Singh AK 《Talanta》2000,51(6):1187-1196
A stable chelating resin matrix was synthesized by covalently linking o-aminophenol (o-AP) with the benzene ring of the polystyrene–divinylbenzene resin, Amberlite XAD-2, through a –N=N– group. Elemental analyses, thermogravimetric analysis (TGA) and infrared spectra have characterized the resulting chelating resin. It has been used to preconcentrate Cu2+, Cd2+, Co2+, Ni2+, Zn2+ and Pb2+, prior to their determination by flame atomic absorption spectrometry. The optimum pH values for quantitative sorption of Cu, Cd, Co, Ni, Zn and Pb are 6.2–7.4, 5.6–7.2, 5.6–9.0, 6.0–9.0, 5.7–7.0 and 5.0–6.0, respectively. These metals are desorbed (recovery 91–98%) with 4 mol dm−3 HNO3. The sorption capacity of the resin is 3.37, 3.42, 3.29, 3.24, 2.94 and 3.32 mg of metal g−1 of resin, respectively, for Cu, Cd, Co, Ni, Zn and Pb. The effect of NaF, NaCl, NaNO3, Na2SO4, and Na3PO4 on the sorption of these metal ions has been investigated. These electrolytes are tolerable up to 0.01 mol dm−3 in case of all the metal ions, except Cl which is tolerable even up to 0.1 mol dm−3 for Zn and 1.0 mol dm−3 for Pb. The preconcentration factor for Cu, Cd, Co, Ni, Zn and Pb are 50, 50, 100, 65, 40 and 40 (concentration level 10–25 μg dm−3) respectively. Simultaneous enrichment of the six metals is possible. The method has been applied to determine Cu, Cd, Co, Ni, Zn and Pb content in well water samples (RSD≤8%).  相似文献   

15.
Roy PK  Rawat AS  Rai PK 《Talanta》2003,59(2):239-246
A new chelating resin was synthesised by the modification of styrene-divinylbenzene (2%) copolymer and incorporation of dithiocarbamate groups. The polydithiocarbamate resin was characterised by elemental analysis, thermal studies and IR studies. The analytical characteristics of the sorbent were established and optimum sorption conditions for Cu, Ni, Pb, Fe, As and Mn determined. The total sorption capacity of the resin was 37 mg g−1 for Ni(II), 35 mg g−1 for Cu(II), 29 mg g−1 for Fe(III) and 23 mg g−1 for Pb(II). The optimum pH for the removal of metal ions was 3-5 for Ni(II), 5 for Cu(II), 4 for Fe(III) and 4-5 for Pb(II). High sorption capacity was observed when compared with other conventional chelating polymers. The sorption kinetics was fairly rapid, as apparent from the loading half time t1/2 values, indicating a better accessibility of the chelating sites.  相似文献   

16.
《Analytical letters》2012,45(5):1009-1021
Abstract

Application of morpholine dithiocarbamate (MDTC) coated Amberlite XAD‐4, for preconcentration of Cu(II), Cd(II), Zn(II), Pb(II), Ni(II) and Mn(II) by solid phase extraction and determination by inductively coupled plasma (ICP) atomic emission spectrometry (AES) was studied. The optimum pH values for quantitative sorption of Cu(II), Cd(II), Zn(II), Pb(II), Ni(II), and Mn(II) were 6.5–8.0, 7.0–8.5, 6.0–8.5, 6.5–8.5, 7.5–9.0, and 8.0–8.5, respectively. The metals were desorbed with 2 mol L?1. The t1/2 values for sorption of metal ions were 2.6, 2.9, 2.5, 2.6, 3.0, and 3.8 min respectively for Cu(II), Cd(II), Zn(II), Pb(II), Ni(II) and Mn(II). The effect of diverse ions on the determination of the previously named metals was studied. Simultaneous enrichment of the six metals was accomplished, and the method was applied for use in the determination of trace metal ions in seawater samples.  相似文献   

17.
Amberlite XAD-2 has been functionalized by coupling it, through the ---N=N--- group, with Pyrocatechol Violet (PV), and the resulting resin has been characterized by elemental analysis, thermogravimetric analysis (TGA) and IR spectra. The resin has been used for preconcentrating Zn(II), Cd(II), Pb(II) and Ni(II) ions prior to their determination by flame atomic absorption spectrometry. The optimum pH values for quantitative sorption are 5, 5–7, 4, and 3 for Zn, Cd, Pb and Ni, respectively. The four metals can be desorbed (recovery ˜98%) with 4 M HNO3; also, 4 M HCl is equally suitable except for Zn. The sorption capacity of the resin is 1410, 1270, 620 and 1360 μg g−1 resin for Zn, Cd, Ni and Pb, respectively. The effect of F, Cl, NO3, SO42− and PO43− on the sorption of these four metal ions has been investigated. They are tolerable in the range 0.01–0.20 M, for Pb. In the sorption of Zn(II) and Ni(II), the tolerance limits of all these ions are upto 0.01 M, whereas for Cd(II), F, NO3, and PO43− have been found to be tolerable upto 0.50, 0.10 and 0.10 M, respectively. The preconcentration factors are 60, 50, 23 and 18 for Zn, Cd, Pb and Ni, respectively. Simultaneous collection and determination of the four metals are possible. Cations commonly present in drinking water do not affect the sorption of either metal ion if present at a concentration level similar to that of water. The method has been applied to determine Zn, Ni and Pb content of well-water samples (RSD ≤9%).  相似文献   

18.
A 5-formyl-3-(1′-carboxyphenylazo) salicylic acid-bonded silica gel (FCPASASG) chelating adsorbent was synthesized according to a very simple and rapid one step reaction between aminopropyl silica gel (APSG) and 5-formyl-3-(1′-carboxyphenylazo) salicylic acid (FCPASA) and its adsorption characteristics were studied in details. Nine trace metals viz.: Cd(II), Zn(II), Fe(III), Cu(II), Pb(II), Mn(II), Cr(III), Co(II) and Ni(II) can be quantitatively adsorbed by the adsorbent from natural aqueous systems at pH 7.0–8.0. The adsorbed metal ions can be readily desorbed with 1 M HNO3 or 0.05 M Na2EDTA. The distribution coefficient, Kd and the percentage concentration of the investigated metal ions on the adsorbent at equilibrium, CM,eqm % (Recovery, R%) were studied as a function of experimental parameters. The logarithmic values of the distribution coefficient, logKd, are 3.7–6.4. Some foreign ions caused little interference in the preconcentration and determination of the investigated nine metals by flame atomic absorption spectrometry (AAS).The adsorption capacity of FCPASASG was 0.32–0.43 meq g−1. C and N elemental analyses of the adsorbent (FCPASASG) allowed us to calculate a surface converge of 0.82 mmol g−1. This value compares well with the best values reported for the azo compounds. The adsorbent and its formed metal chelates were characterized by IR (absorbance and/or reflectance) and UV spectrometry, potentiometric titrations and thermogravimetric analysis (TGA and DTG). The mode of chelation between the FCPASASG adsorbent and the investigated metal ions is proposed to be due to reaction of those metal ions with the salicylic and/or the carboxyphenylazo chelation centers of the FCPASASG adsorbent. Nanogram concentrations (0.07–0.14 ng ml−1) of Cd(II), Zn(II), Fe(III), Pb(II), Cr(III), Mn(II), Cu(II), Co(II) and Ni(II) can be determined reliably with a preconcentration factor of 100.  相似文献   

19.
A new chelating resin, poly(diacetonitrile methacrylamide-co-divinylbenzene-co-vinylimidazole), was synthesized and characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and elemental analysis. The novel resin was used for the first time as a chelating adsorbent for the preconcentration of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn from various samples by flame atomic absorption spectrometry. The adsorption capacities of the resin were 29.3, 31.6, 29.3, 27.3, 35.5, 31.7, 39.8, and 32.3?mg?g?1 for Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn, respectively. The detection limits of the metal ions were from 0.42 to 3.21?µg?L?1. A preconcentration factor of 30 for all metal ions was obtained. The precision of the method as the relative standard deviation was less than or equal to 2.6%. The described method was validated with certified reference materials and fortified real samples. The method was used for the determination of the analytes in well water and wastewater.  相似文献   

20.
The behaviour of metal ions during titration with triethylenetetraminehexaacetic acid (TTHA) in several supporting electrolytes was investigated by d.c. and square-wave polarography. The composition of the complexes (M2L or ML) formed during titration is reported as well as the [M] : [L] ratio corresponding to the end-point of amperometric titration. The optimal conditions (by d.c. and s.w. detection) are given for titrations of Cu(II), Ni(II), Cd(II), Pb(II) and Zn(II) based on the reduction current of metal ions, as well as for titrations of Cu(II), Cd(II), Pb(II), Zn(II), Al(III), Ca(II) and Mg(II) based on the anodic current of TTHA. Application of the anodic current of TTHA permits determinations of polarographically inactive metals and is valuable in analysis of mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号