首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. A non-intrusive laser-based method for direct velocity measurements has been demonstrated in a superorbital flow facility. The method is based upon laser enhanced ionisation velocimetry in which a tagged region is created by two step excitation of sodium and subsequent collisional ionisation. The achieved depletion of neutral atoms is then interrogated by planar laser induced fluorescence. The velocities were measured in the freestream at a superorbital condition yielding km/s. These results compare favourably with the measured shock speeds in the facility. Received 15 March 1999 / Accepted 2 March 2000  相似文献   

2.
Particle imaging techniques for microfabricated fluidic systems   总被引:7,自引:0,他引:7  
This paper presents the design and implementation of velocimetry techniques applicable to the analysis of microfluidic systems. The application of both micron-resolution particle image velocimetry (micro-PIV) and particle tracking velocimetry (PTV) to the measurement of velocity fields within micromachined fluidic channels is presented. The particle tracking system uses epifluorescent microscopy, CCD imaging, and specialized image interrogation algorithms to provide microscale velocity measurement resolution. The flow field in a straight channel section is measured using cross-correlation micro-PIV and compared to the analytical solution for a measured mass flow rate. Velocity field measurements of the flow at the intersection of a cross-channel are also presented and compared with simulations from a commercially available flow solver, CFD-ACE+. Discussions regarding flow seeding, imaging optics, and the flow setup for measuring flows in microfabricated fluidic devices are presented. A simple process for estimating measurement uncertainty of the in-plane velocity measurements caused by three-dimensional Brownian motion is described. A definition for the measurement depth for PTV measurements is proposed. The agreement between measured and predicted values lends further support to the argument that liquid microflows with characteristic dimensions of order 50-μm dimension channels follow macroscale flow theory.  相似文献   

3.
Time periodic wall parallel Lorentz forces have been used to excite the separated flow on the suction side of an inclined flat plate. Experiments for a Reynolds number of 104 and an angle of attack of α = 13° are reported. The controlled flow is characterised by a small number of relatively large scale vortices, which are related to the control mechanism. The influence of the main parameters, i.e. the excitation frequency, amplitude and wave form on the suction side flow structures was investigated by analysing time resolved particle image velocimetry (TR-PIV) measurements using continuous wavelet analysis for vortex detection and characterisation. Statistical analysis of the coherent structures of the flow was performed on a large amount of data samples.  相似文献   

4.
Improved understanding of in-cylinder flows requires knowledge from well-resolved experimental velocimetry measurements and flow simulation modeling. Engine simulations using large eddy simulations (LES) are making large progress and the need for well documented velocimetry measurements for model validation is high. This work presents velocimetry measurements from PIV, high-speed PIV, stereoscopic PIV, and tomographic PIV to extensively describe the in-cylinder flow field in a motored optical engine operating at 800 RPM. These measurements also establish a comprehensive database designed for LES model development and validation. Details of the engine, engine accessory components, and well-controlled boundary conditions and engine operation are presented. The first two statistical moments of the flow field are computed and show excellent agreement among the PIV database. Analysis of statistical moments based on limited sample size is presented and is important for modeling validation purposes. High-speed PIV resolved the instantaneous flow field throughout entire engine cycles (i.e. 719 consecutive crank-angles), while tomographic PIV images are further used to investigate the 3D flow field and identify regions of strong vortical structures identified by the Q-criterion. Principle velocity gradient components are computed and emphasize the need to resolve similar spatial scales between experimental and modeling efforts for suitable model validation.  相似文献   

5.
A combined digital particle image velocimetry (DPIV) and planar laser induced fluorescence (PLIF) approach was developed to measure both the time mean and turbulent mass transport in mixing processes. The system couples the two well-known techniques to enable synchronized planar measurements of flow velocities and concentrations in a study area. The potential interference effect between the seeding particles for DPIV and the fluorescent dye excitation for PLIF was carefully investigated. The performance of the system was verified with the experimental results of a turbulent round jet discharging into a stagnant environment. Comparison between the measurements obtained in the present study with the large body of existing information on pure jets is satisfactory. The key advantage of the shorter duration required with this approach compared to point-based techniques is highlighted.  相似文献   

6.
A magnetic resonance velocimetry (MRV) experimental technique based on magnetic resonance imaging and capable of measuring the turbulent Reynolds stresses in a 3D flow domain is described. Results are presented in backward facing step flow in a square channel with a Reynolds number of 48,000 based on step height and freestream velocity at the step. MRV results are compared to particle image velocimetry (PIV) measurements in the centerplane containing the streamwise and cross-stream axes. MRV and PIV mean velocity measurements show excellent agreement. MRV measurements for Reynolds normal stresses compare to within ±20% of the PIV results while results for the turbulent shear are less accurate.  相似文献   

7.
Flow visualization, particle image velocimetry (PIV), and laser Doppler velocimetry (LDV) are among the most useful tools available for experimental aerodynamics studies. Implementation of these techniques, however, requires that seed material be introduced into the flow. The undesirable qualities of the seeding material often prevent the use of flow visualization and velocimetry techniques in many test environments. This is particularly true for large-scale, closed-circuit tunnels where facility operators must weigh the risks of facility contamination, sensor damage, and safety concerns that might result from the introduction of seed particles. Identification of a practical clean seeding material that minimizes or eliminates these concerns would enable flow visualization and velocimetry techniques to be deployed in these facilities. Here, we demonstrate two seeding systems that have the potential to provide such a solution. The first system is a new concept which uses liquid carbon dioxide that can be made to form discrete particles as it expands from a high-pressure tank. PIV measurements are demonstrated in several flows, including supersonic and subsonic tunnels, using these residue-free seed particles. The second system utilizes a combination of steam and liquid nitrogen to produce an aerosol or fog that serves as flow seeding. Water- or steam-based seeding has been previously demonstrated for flow visualization in subsonic tunnels; here however, we utilize this seed material for PIV and LDV measurements as well as for flow visualization in a large supersonic tunnel.  相似文献   

8.
多普勒全场测速技术的进展   总被引:1,自引:0,他引:1  
张洪军  吕进 《力学进展》2007,37(3):428-442
多普勒全场测速(Doppler global velocimetry)是一种基于分子滤波原理来测量散射光多普勒频移, 从而测量平面内流动速度场的技术, 主要应用于流体力学、空气动力学和燃烧学实验研究中, 尤其适用于较高马赫数流场测量. 研究人员也称其为平面多普勒测速(planar Doppler velocimetry)、吸收-滤波平面多普勒测速(Absorption filtered planarDoppler velocimetry), 滤波瑞利散射技术(filtered Rayleigh scattering)等. 本文对多普勒全场测速技术的工作原理、结构组成、数据处理、发展趋势等进行了比较全面的介绍.   相似文献   

9.
We analyzed the modifications of the airflow around an NACA 0015 airfoil when the flow was perturbed with electrohydrodynamic forces. The actuation was produced with a plasma sheet device (PSD) consisting in two bare electrodes flush mounted on the surface of the wing profile operated to obtain a discharge contouring the body in the inter-electrode space. We analyze the influence of different parameters of the actuation (frequency, input power, electrodes position) on the aerodynamic performance of the airfoil, basing our study on measurements of the surface pressure distribution and of the flow fields with particle image velocimetry technique. The experiments indicated that at moderate Reynolds numbers (150,000 < Re < 333,000) and at high angles of attack, steady or periodic actuations enabled large improvement of the lift and drag/lift aerodynamic coefficients by reattaching the flow along the extrados. However, to attain the same results steady actuations required larger power consumption. When exciting the flow with a moderate value of non-dimensional power coefficient (ratio of electric power flow with the kinetic power flow), a frequency of excitation produced a peak on the coefficients that evaluate the airfoil performance. This peak in terms of a non-dimensional frequency was close to 0.4 and can be associated to an optimal frequency of excitation. However, our work indicates that this peak is not constant for all stalled flow conditions and should be analyzed considering scale factors that take into account the ratio of the length where the forcing acts and the cord length.  相似文献   

10.
This experimental study investigates the control of flow in a short diffuser with a 2×45° divergence angle, using wall synthetic jets. Measurements are made by particle image velocimetry. Velocity profiles, velocity fields, and vorticity maps show that the flow, initially separated as a free jet, undergoes a global excitation which creates periodic oscillating structures producing large fluid motions in the vicinity of the wall. This results in an increased mixing of the primary separated jet with the surrounding fluid.  相似文献   

11.
Conventional rheometry coupled with local velocity measurements (ultrasonic Doppler velocimetry) are used to study the flow behaviour of various commercial pulp fibre suspensions at fibre mass concentrations ranging from 1 to 5 wt.%. Experimental data obtained using a stress-controlled rheometer by implementing a vane in large cup geometry exhibits apparent yield stress values which are lower than those predicted before mainly due to existence of apparent slip. Pulp suspensions exhibit shear-thinning behaviour up to a high shear rate value after which Newtonian behaviour prevails. Local velocity measurements prove the existence of significant wall slippage at the vane surface. The velocimetry technique is also used to study the influence of pH and lignin content on the flow behaviour of pulp suspensions. The Herschel–Bulkley constitutive equation is used to fit the local steady-state velocity profiles and to predict the steady-state flow curves obtained by conventional rheometry. Consistency between the various sets of data is found for all suspensions studied, including apparent yield stress, apparent wall slip and complete flow curves.  相似文献   

12.
Simultaneous velocity and concentration measurements have been performed in a gas-turbine combustor model. Particle image velocimetry (PIV) was used to acquire planar velocity information and to identify coherent flow structures. The Mie scattering technique, based on a slightly modified experimental setup, was used for concentration measurements in this mixing flow. The degree of mixing was assessed by examining local concentration measurements while inhomogeneously seeding the primary and secondary stream of the mixing layer. Connections between flow field and concentration distribution were highlighted using the proper orthogonal decomposition algorithm (POD). Uncertainties and systematic errors for the PIV measurements due to the suboptimal seeding are discussed using a comparison with a second test series at optimal seeding conditions. Results are presented for several flow parameters and at various lateral planes.  相似文献   

13.
Three-dimensional surface illumination using curved laser-sheet techniques is introduced for optical flow measurements in conformal curved surfaces. The illumination method is applicable to many different optical-based flow measurement techniques, with this paper focusing on application to flow visualization and particle image velocimetry. A brief discussion and example of curved laser-sheet generation is given followed by an example of the technique applied to PIV of low Reynolds number transitional flow around a low-pressure turbine blade.  相似文献   

14.
This paper presents the measurements of the flow in the space between an enclosed corotating disk pair using particle image velocimetry (PIV) and laser doppler velocimetry (LDV). LDV gives the time history of velocity for time-domain analysis, while PIV provides the spatial distribution of the instantaneous velocity. A flow visualization technique displaying the concentration distribution of seeding particles was also employed to visualize the flow patterns. Experiments were conducted on the interdisk midplane with a Reynolds number of 5.25×105. Based on the LDV measured rotating frequency of the vortices around the hub, the phase-resolved PIV measurements were achieved, and a rotating reference coordinate system was employed to represent the flow patterns. The phase-resolved measurements reveal that the circumferential flow velocity oscillates periodically in both the inner and outer regions but in opposite trends. Based on the phase averaged data, the contributions of the periodic and random motions to the Reynolds stresses were evaluated, and the spatial distributions of the periodic Reynolds stresses were displayed. It is found that, the local rotation of the fluid induced by the deformation of the inner region contribute to a significant portion of the momentum transport.  相似文献   

15.
The flow in the inter-blade channels of a bulb turbine was measured using endoscopic cameras integrated to a stereoscopic particle image velocimetry (S-PIV) system. This paper presents results from the measurement campaign and also provides some key conclusions based on the dataset. The technical aspect of the measurement configuration is addressed. The main focus is on the novelties and challenges brought by the use of endoscopic cameras to achieve S-PIV measurements between the runner blades. For the first time in hydraulic rotating machinery, velocity measurements covered 62 % of a rotor inter-blade flow. After outlining the techniques used, comparison with laser Doppler velocimetry measurements allows assessing the intrusiveness of the endoscopes. Then, some velocity field analyses are shown. First, the rotor–stator interaction is outlined as the influence of the guide vane wakes on the runner flow. The size, localization, strength and dissipation of those structures are inferred from the information coming from measurements. Finally, the PIV data allow the identification of a vortex located near the suction side of the blades and originating from the corner between the leading edge and the hub when operating the bulb turbine at part-load.  相似文献   

16.
In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements.  相似文献   

17.
In this paper, we present the results of an investigation into the flow of a series of viscoelastic wormlike micelle solutions past a confined circular cylinder. Although this benchmark flow has been studied in great detail for polymer solutions, this paper reports the first experiments to use a viscoelastic wormlike micelle solution as the test fluid. The flow kinematics, stability and pressure drop were examined for two different wormlike micelle solutions over a wide range of Deborah numbers and cylinder to channel aspect ratios. A combination of particle image velocimetry and pressure drop measurements were used to characterize the flow kinematics, while flow-induced birefringence measurements were used to measure the micelle deformation and alignment in the flow. The pressure drop was found to decrease initially due to the shear thinning of the test fluid before increasing at higher flow rates as elastic effects begin to dominate the flow. Above a critical Deborah number, an elastic instability was observed for just one of the test fluids studied, the other remained stable for all Deborah number tested. Flow-induced birefringence and velocimetry measurements showed that observed instability originates in the extensional flow in the wake of the cylinder and appears not as periodic counter-rotating vortices as has been observed in the flow of polymer solutions past circular cylinders, but as a chaotic rupture event in the wake of the cylinder that propagates axially along the cylinder. Reducing the cylinder to channel aspect ratio and the degree of shearing introduced by the channel walls had a weak impact on the stability of the flow. These measurements, when taken in conjunction with previous work on flow of wormlike micelle solutions through a periodic array of cylinders, definitively show that the instability can be attributed to a breakdown of the wormlike micelle solutions in the extensional flow in the wake of the cylinder.  相似文献   

18.
The turbulence structure of a horizontal channel flow with microbubbles is experimentally investigated using combined particle image velocimetry (PIV) in order to clarify the mechanism of drag reduction caused by microbubbles. A new system which simultaneously measures the liquid phase and the dispersed bubbles is proposed, based on a combination of particle tracking velocimetry (PTV), laser-induced fluorescence (LIF) and the shadow image technique (SIT). To accurately obtain the velocity of the liquid phase, tracer particles which overlap with the bubble shadow images are almost entirely eliminated in the post-processing. Finally, the turbulence characteristics of the flow field are presented, including measurements for both phases, and the bubble effect on the turbulence is quantified.  相似文献   

19.
Phase-resolved measurements of the velocity field in acoustically forced, flickering laminar co-flowing methane/air diffusion flames were made. Identical flames have been studied extensively in the past in order to characterize the effects of the vortical structures responsible for the flicker on the flame structure, but the initial velocity perturbation and the velocity fields have not been reported previously. Phase-locked measurements of the instantaneous two-dimensional velocity field at ten phases within a full excitation cycle were made using particle image velocimetry. The velocity measurements were complemented by phase-resolved shadowgraphs recorded in the vicinity of the flame base. Measurements are reported for the two forcing conditions that have most often been studied for this burner. When integrated with the results of previous studies, these measurements provide a clearer picture of the interactions between the buoyancy-induced vortical structures and the flame sheets, as well as providing the initial conditions required for realistic modeling of these flames.  相似文献   

20.
This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular taggingvelocimetry(MTV)andmoleculartaggingthermometry(MTT), for both qualitative flow visualization of thermally induced flow structures and quantitative whole-fiel measurementsofflowvelocityandtemperaturedistributions.The MTV and MTT techniques can also be easily combined to result in a so-called molecular tagging velocimetry and thermometry(MTVT) technique, which is capble of achieving simultaneousmeasurementsofflowvelocityandtemperature distribution in flui flows. Instead of using tiny particles, the molecular tagging techniques(MTV, MTT, and MTVT)use phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, as the tracers for the flow velocity and temperature measurements. The unique attraction and implementation of the molecular tagging techniques are demonstrated by three application examples, which include:(1) to quantify the unsteady heat transfer process from a heatedcylindertothesurroundingflui flowinordertoexamine the thermal effects on the wake instabilities behind the heated cylinder operating in mixed and forced heat convection regimes,(2) to reveal the time evolution of unsteady heat transfer and phase changing process inside micro-sized, icing water droplets in order to elucidate the underlying physics pertinent to aircraft icing phenomena, and(3) to achievesimultaneousdropletsize,velocityandtemperaturemeasurements of "in-flight droplets to characterize the dynamic and thermodynamic behaviors of flyin droplets in spray flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号