首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human chemokine receptor CXCR3 (hCXCR3) antagonists have potential therapeutic applications as antivirus, antitumor, and anti-inflammatory agents. A novel virtual screening protocol, which combines pharmacophore-based and structure-based approaches, was proposed. A three-dimensional QSAR pharmacophore model and a structure-based docking model were built to virtually screen for hCXCR3 antagonists. The hCXCR3 antagonist binding site was constructed by homology modeling and molecular dynamics (MD) simulation. By combining the structure-based and ligand-based screenings results, 95% of the compounds satisfied either pharmacophore or docking score criteria and would be chosen as hits if the union of the two searches was taken. The false negative rates were 15% for the pharmacophore model, 14% for the homology model, and 5% for the combined model. Therefore, the consistency of the pharmacophore model and the structural binding model is 219/273 = 80%. The hit rate for the virtual screening protocol is 273/286 = 95%. This work demonstrated that the quality of both the pharmacophore model and homology model can be measured by the consistency of the two models, and the false negatives in virtual screening can be reduced by combining two virtual screening approaches.  相似文献   

2.
Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyses the fourth reaction of de novo pyrimidine biosynthesis in parasites, and represents an important target for the treatment of malaria. In this study, we describe pharmacophore-based virtual screening combined with docking study and biological evaluation as a rational strategy for identification of novel hits as antimalarial agents. Pharmacophore models were established from known PfDHODH inhibitors using the GALAHAD module with IC50 values ranging from 0.033 μM to 142 μM. The best pharmacophore model consisted of three hydrogen bond acceptor, one hydrogen bond donor and one hydrophobic features. The pharmacophore models were validated through receiver operating characteristic and Günere–Henry scoring methods. The best pharmacophore model as a 3D search query was searched against the IBS database. Several compounds with different structures (scaffolds) were retrieved as hit molecules. Among these compounds, those with a QFIT value of more than 81 were docked in the PfDHODH enzyme to further explore the binding modes of these compounds. In silico pharmacokinetic and toxicities were predicted for the best docked molecules. Finally, the identified hits were evaluated in vivo for their antimalarial activity in a parasite inhibition assay. The hits reported here showed good potential to become novel antimalarial agents.  相似文献   

3.
Identification of novel compound classes for a drug target is a challenging task for cheminformatics and drug design when considerable research has already been undertaken and many potent lead structures have been identified, which leaves limited unclaimed chemical space for innovation. We validated and successfully applied different state-of-the-art techniques for virtual screening (Bayesian machine learning, automated molecular docking, pharmacophore search, pharmacophore QSAR and shape analysis) of 4.6 million unique and readily available chemical structures to identify promising new and competitive antagonists of the strychnine-insensitive Glycine binding site (GlycineB site) of the NMDA receptor. The novelty of the identified virtual hits was assessed by scaffold analysis, putting a strong emphasis on novelty detection. The resulting hits were tested in vitro and several novel, active compounds were identified. While the majority of the computational methods tested were able to partially discriminate actives from structurally similar decoy molecules, the methods differed substantially in their prospective applicability in terms of novelty detection. The results demonstrate that although there is no single best computational method, it is most worthwhile to follow this concept of focused compound library design and screening, as there still can new bioactive compounds be found that possess hitherto unexplored scaffolds and interesting variations of known chemotypes.  相似文献   

4.
Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR) signaling pathway is one of the sought after therapeutic target for treating human cancers. This pathway is often hyper activated in cancers. In the present study, pharmacophore-based virtual screening, molecular docking, and binding free energy calculations were performed on a series of quinoline derivatives which were reported to be effective against PI3Kα. A five-point pharmacophore hypothesis with one hydrogen bond acceptor (A), one hydrogen bond donor (D), one hydrophobic group (H), and two aromatic rings (R) was developed with acceptable R2 and Q2 values of 0.93 and 0.60 respectively. Eventually, common pharmacophore hypothesis-based screening was conducted against TOSLab, CPP, and ASINEX macrocylce databases, and potential hits were identified which were further subjected to rigorous docking process in order to screen out drug like molecules having crucial interactions with the target PI3Kα. Finally, binding free energy analysis was carried out for the top hits obtained from docking process. We also designed new 1, 3, 4-oxadiazole-based cyclic peptides by incorporating the structural features of the hits obtained from the above databases. Among the designed cyclic peptides, the cyclic peptide with tryptophan moiety showed good interactions and free binding energy values. On the whole, this study helped us in identifying new promising molecules as PI3Kα inhibitors which can be explored further to generate greater number of compounds with better pharmacokinetic properties.  相似文献   

5.
A major problem in structure-based virtual screening applications is the appropriate selection of a single or even multiple protein structures to be used in the virtual screening process. A priori it is unknown which protein structure(s) will perform best in a virtual screening experiment. We investigated the performance of ensemble docking, as a function of ensemble size, for eight targets of pharmaceutical interest. Starting from single protein structure docking results, for each ensemble size up to 500,000 combinations of protein structures were generated, and, for each ensemble, pose prediction and virtual screening results were derived. Comparison of single to multiple protein structure results suggests improvements when looking at the performance of the worst and the average over all single protein structures to the performance of the worst and average over all protein ensembles of size two or greater, respectively. We identified several key factors affecting ensemble docking performance, including the sampling accuracy of the docking algorithm, the choice of the scoring function, and the similarity of database ligands to the cocrystallized ligands of ligand-bound protein structures in an ensemble. Due to these factors, the prospective selection of optimum ensembles is a challenging task, shown by a reassessment of published ensemble selection protocols.  相似文献   

6.
The design of biologically active compounds from ligand-free protein structures using a structure-based approach is still a major challenge. In this paper, we present a fast knowledge-based approach (HS-Pharm) that allows the prioritization of cavity atoms that should be targeted for ligand binding, by training machine learning algorithms with atom-based fingerprints of known ligand-binding pockets. The knowledge of hot spots for ligand binding is here used for focusing structure-based pharmacophore models. Three targets of pharmacological interest (neuraminidase, beta2 adrenergic receptor, and cyclooxygenase-2) were used to test the evaluated methodology, and the derived structure-based pharmacophores were used in retrospective virtual screening studies. The current study shows that structure-based pharmacophore screening is a powerful technique for the fast identification of potential hits in a chemical library, and that it is a valid alternative to virtual screening by molecular docking.  相似文献   

7.
Efficient and sufficient incorporation of protein flexibility into docking is still a challenging task. Docking to an ensemble of protein structures has proven its utility for docking, but using a large ensemble of structures can reduce the efficiency of docking and can increase the number of false positives in virtual screening. In this paper, we describe the application of our new methodology, Limoc, to generate an ensemble of holo-like protein structures in combination with the relaxed complex scheme (RCS), to virtual screening. We describe different schemes to reduce the ensemble of protein structures to increase efficiency and enrichment quality. Utilizing experimental knowledge about actives for a target protein allows the reduction of ensemble members to a minimum of three protein structures, increasing enrichment quality and efficiency simultaneously.  相似文献   

8.
9.
Incorporating receptor flexibility is considered crucial for improvement of docking-based virtual screening. With an abundance of crystallographic structures freely available, docking with multiple crystal structures is believed to be a practical approach to cope with protein flexibility. Here we describe a successful application of the docking of multiple structures to discover novel and potent Chk1 inhibitors. Forty-six Chk1 structures were first compared in single structure docking by predicting the binding mode and recovering known ligands. Combinations of different protein structures were then compared by recovery of known ligands and an optimal ensemble of Chk1 structures were selected. The chosen structures were used in the virtual screening of over 60?000 diverse compounds for Chk1 inhibitors. Six novel compounds ranked at the top of the hits list were tested experimentally, and two of these compounds inhibited Chk1 activity-the best with an IC(50) value of 9.6 μM. Further study indicated that achieving a better enrichment and identifying more diverse compounds was more likely using multiple structures than using only a single structure even when protein structures were randomly selected. Taking into account conformational energy difference did not help to improve enrichment in the top ranked list.  相似文献   

10.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious zoonotic virus first reported into the human population in September 2012 on the Arabian Peninsula. The virus causes severe and often lethal respiratory illness in humans with an unusually high fatality rate. The N-terminal domain (NTD) of receptor-binding S1 subunit of coronavirus spike (S) proteins can recognize a variety of host protein and mediates entry into human host cells. Blocking the entry by targeting the S1-NTD of the virus can facilitate the development of effective antiviral drug candidates against the pathogen. Therefore, the study has been designed to identify effective antiviral drug candidates against the MERS-CoV by targeting S1-NTD. Initially, a structure-based pharmacophore model (SBPM) to the active site (AS) cavity of the S1-NTD has been generated, followed by pharmacophore-based virtual screening of 11,295 natural compounds. Hits generated through the pharmacophore-based virtual screening have re-ranked by molecular docking and further evaluated through the ADMET properties. The compounds with the best ADME and toxicity properties have been retrieved, and a quantum mechanical (QM) based density-functional theory (DFT) has been performed to optimize the geometry of the selected compounds. Three optimized natural compounds, namely Taiwanhomoflavone B (Amb23604132), 2,3-Dihydrohinokiflavone (Amb23604659), and Sophoricoside (Amb1153724), have exhibited substantial docking energy >−9.00 kcal/mol, where analysis of frontier molecular orbital (FMO) theory found the low chemical reactivity correspondence to the bioactivity of the compounds. Molecular dynamics (MD) simulation confirmed the stability of the selected natural compound to the binding site of the protein. Additionally, molecular mechanics generalized born surface area (MM/GBSA) predicted the good value of binding free energies (ΔG bind) of the compounds to the desired protein. Convincingly, all the results support the potentiality of the selected compounds as natural antiviral candidates against the MERS-CoV S1-NTD.  相似文献   

11.
Kinesin-like protein (KIF11) is a molecular motor protein that is essential in mitosis. Removal of KIF11 prevents centrosome migration and causes cell arrest in mitosis. KIF11 defects are linked to the disease of microcephaly, lymph edema or mental retardation. The human KIF11 protein has been actively studied for its role in mitosis and its potential as a therapeutic target for cancer treatment. Pharmacophore modeling, molecular docking and density functional theory approaches was employed to reveal the structural, chemical and electronic features essential for the development of small molecule inhibitor for KIF11. Hence we have developed chemical feature based pharmacophore models using Discovery Studio v 2.5 (DS). The best hypothesis (Hypo1) consisting of four chemical features (two hydrogen bond acceptor, one hydrophobic and one ring aromatic) has exhibited high correlation co-efficient of 0.9521, cost difference of 70.63 and low RMS value of 0.9475. This Hypo1 is cross validated by Cat Scramble method; test set and decoy set to prove its robustness, statistical significance and predictability respectively. The well validated Hypo1 was used as 3Dquery to perform virtual screening. The hits obtained from the virtual screening were subjected to various scrupulous drug-like filters such as Lipinski’s rule of five and ADMET properties. Finally, six hit compounds were identified based on the molecular interaction and its electronic properties. Our final lead compound could serve as a powerful tool for the discovery of potent inhibitor as KIF11 agonists.  相似文献   

12.
13.
Antagonism of CCR9 is a promising mechanism for treatment of inflammatory bowel disease, including ulcerative colitis and Crohn’s disease. There is limited experimental data on CCR9 and its ligands, complicating efforts to identify new small molecule antagonists. We present here results of a successful virtual screening and rational hit-to-lead campaign that led to the discovery and initial optimization of novel CCR9 antagonists. This work uses a novel data fusion strategy to integrate the output of multiple computational tools, such as 2D similarity search, shape similarity, pharmacophore searching, and molecular docking, as well as the identification and incorporation of privileged chemokine fragments. The application of various ranking strategies, which combined consensus and parallel selection methods to achieve a balance of enrichment and novelty, resulted in 198 virtual screening hits in total, with an overall hit rate of 18%. Several hits were developed into early leads through targeted synthesis and purchase of analogs.  相似文献   

14.
15.
Computationally efficient structure-based virtual screening methods have recently been reported that seek to find effective means to utilize experimental structure information without employing detailed molecular docking calculations. These tools can be coupled with efficient experimental screening technologies to improve the probability of identifying hits and leads for drug discovery research. Commercial software ROCS (rapid overlay of chemical structures) from Open Eye Scientific is such an example, which is a shape-based virtual screening method using the 3D structure of a ligand, typically from a bound X-ray costructure, as the query. We report here the development of a new structure-based pharmacophore search method (called Shape4) for virtual screening. This method adopts a variant of the ROCS shape technology and expands its use to work with an empty crystal structure. It employs a rigorous computational geometry method and a deterministic geometric casting algorithm to derive the negative image (i.e., pseudoligand) of a target binding site. Once the negative image (or pseudoligand) is generated, an efficient shape comparison algorithm in the commercial OE SHAPE Toolkit is adopted to compare and match small organic molecules with the shape of the pseudoligand. We report the detailed computational protocol and its computational validation using known biologically active compounds extracted from the WOMBAT database. Models derived for five selected targets were used to perform the virtual screening experiments to obtain the enrichment data for various virtual screening methods. It was found that our approach afforded similar or better enrichment ratios than other related methods, often with better diversity among the top ranking computational hits.  相似文献   

16.
Targeting SARS-CoV-2 papain-like protease using inhibitors is a suitable approach for inhibition of virus replication and dysregulation of host anti-viral immunity. Engaging all five binding sites far from the catalytic site of PLpro is essential for developing a potent inhibitor. We developed and validated a structure-based pharmacophore model with 9 features of a potent PLpro inhibitor. The pharmacophore model-aided virtual screening of the comprehensive marine natural product database predicted 66 initial hits. This hit library was downsized by filtration through a molecular weight filter of ≤ 500 g/mol. The 50 resultant hits were screened by comparative molecular docking using AutoDock and AutoDock Vina. Comparative molecular docking enables benchmarking docking and relieves the disparities in the search and scoring functions of docking engines. Both docking engines retrieved 3 same compounds at different positions in the top 1 % rank, hence consensus scoring was applied, through which CMNPD28766, aspergillipeptide F emerged as the best PLpro inhibitor. Aspergillipeptide F topped the 50-hit library with a pharmacophore-fit score of 75.916. Favorable binding interactions were predicted between aspergillipeptide F and PLpro similar to the native ligand XR8-24. Aspergillipeptide F was able to engage all the 5 binding sites including the newly discovered BL2 groove, site V. Molecular dynamics for quantification of Cα-atom movements of PLpro after ligand binding indicated that it exhibits highly correlated domain movements contributing to the low free energy of binding and a stable conformation. Thus, aspergillipeptide F is a promising candidate for pharmaceutical and clinical development as a potent SARS-CoV-2 PLpro inhibitor.  相似文献   

17.
Janus kinase 1 and 2, non-receptor protein tyrosine kinases, are implicated in various cancerous diseases. Involvement of these two enzymes in the pathways that stimulate cell proliferation in cancerous conditions makes them potential therapeutic targets for designing new dual-targeted agents for the treatment of cancer. In the present study, two separate pharmacophore models were developed and the best models for JAK1 (AAADH.25) and JAK2 (ADRR.92) were selected on the basis of their external predictive ability. Both models were subjected to a systematic virtual screening (VS) protocol using a PHASE database of 1.5 million molecules. The hits retrieved in VS were investigated for ADME properties to avoid selection of molecules with a poor pharmacokinetic profile. The molecules considered to be within the range of acceptable limits of ADME properties were further employed for docking simulations with JAK1 and JAK2 proteins to explore the final hits that possess structural features of both pharmacophore models as well as display essential interactions with both of them. Thus, the new molecules obtained in this way should show inhibitory activity against JAK1 and JAK2 and may serve as novel therapeutic agents for the treatment of cancerous disease conditions.  相似文献   

18.
Inspired by the current representation of the ligand-receptor binding process, a normal-mode-based methodology is presented to incorporate receptor flexibility in ligand docking and virtual screening. However, the systematic representation of the deformation space grows geometrically with the number of modes, and furthermore, midscale loop rearrangements like those found in protein kinase binding pockets cannot be accounted for with the first lowest-frequency modes. We thus introduced a measure of relevance of normal modes on a given region of interest and showed that only very few modes in the low-frequency range are necessary and sufficient to describe loop flexibility in cAMP-dependent protein kinase. We used this approach to generate an ensemble of representative receptor backbone conformations by perturbing the structure along a combination of relevant modes. Each ensemble conformation is complexed with known non-native binders to optimize the position of the binding-pocket side chains through a full flexible docking procedure. The multiple receptor conformations thus obtained are used in a small-scale virtual screening using receptor ensemble docking. We evaluated this algorithm on holo and apo structures of cAMP-dependent protein kinase that exhibit backbone rearrangements on two independent loop regions close to the binding pocket. Docking accuracy is improved, since the ligands considered in the virtual screening docked within 1.5 A to at least one of the structures. The discrimination between binders and nonbinders is also enhanced, as shown by the improvement of the enrichment factor. This constitutes a new step toward the systematic integration of flexible ligand-flexible receptor docking tools in structure-based drug discovery.  相似文献   

19.
HIV-1 integrase (IN) is a retroviral enzyme that catalyses integration of the reverse-transcribed viral DNA into the host genome, which is necessary for efficient viral replication. In this study, we have performed an in silico virtual screening for the identification of potential HIV-1 IN strand transfer (ST) inhibitors. Pharmacophore modelling and atom-based 3D-QSAR studies were carried out for a series of compounds belonging to 3-Hydroxypyrimidine-2,4-diones. Based on the ligand-based pharmacophore model, we obtained a five-point pharmacophore with two hydrogen bond acceptors (A), one hydrogen bond donor (D), one hydrophobic group (H) and one aromatic ring (R) as pharmacophoric features. The pharmacophore hypothesis AADHR was used as a 3D query in a sequential virtual screening study to filter small molecule databases Maybridge, ChemBridge and Asinex. Hits matching with pharmacophore hypothesis AADHR were retrieved and passed progressively through Lipinski’s rule of five filtering, molecular docking and hierarchical clustering. The five compounds with best hits with novel and diverse chemotypes were subjected to QM/MM docking, which showed improved docking accuracy. We further performed molecular dynamics simulation and found three compounds that form stable interactions with key residues. These compounds could be used as a leads for further drug development and rational design of HIV-1 IN inhibitors.  相似文献   

20.
Heat shock protein 70 is an effective anticancer target as it influences many signaling pathways. Hence the study investigated the important pharmacophore feature required for ATPase inhibitors of HSP70 by generating a ligand based pharmacophore model followed by virtual based screening and subsequent validation by molecular docking in Discovery studio V4.0. The most extrapolative pharmacophore model (hypotheses 8) consisted of four hydrogen bond acceptors. Further validation by external test set prediction identified 200 hits from Mini Maybridge, Drug Diverse, SCPDB compounds and Phytochemicals. Consequently, the screened compounds were refined by rule of five, ADMET and molecular docking to retain the best competitive hits. Finally Phytochemical compounds Muricatetrocin B, Diacetylphiladelphicalactone C, Eleutheroside B and 5-(3-{[1-(benzylsulfonyl)piperidin-4-yl]amino}phenyl)- 4-bromo-3-(carboxymethoxy)thiophene-2-carboxylic acid were obtained as leads to inhibit the ATPase activity of HSP70 in our findings and thus can be proposed for further in vitro and in vivo evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号