首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The red phosphorescent osmium(II) complexes [Os(LR)2(PH3)2] (L = 2-pyridyltriazole (ptz): R = H (1a), CF3 (1b), t-Bu (1c)); L = 2-pyridylpyrazole (ppz): R = H (2a), CF3 (2b), t-Bu (2c)); L = 2-phenylpyridine (ppy): R = H (3a)) were explored using density functional theory (DFT) methods. The ground- and excited-state geometries of the complexes were optimized at the B3LYP/LANL2DZ and UB3LYP/LANL2DZ levels, respectively. The absorption and phosphorescence of the complexes in CH2Cl2 media were calculated based on the optimized ground- and excited-state geometries using time-dependent density functional theory method with the polarized continuum model. The optimized geometry structural parameters of the complexes in the ground state agree well with the corresponding experimental values. The lower-lying unoccupied molecular orbitals of the complexes are dominantly localized on the L ligand, while the higher-lying occupied ones are composed of Os(II) atom and L ligand. The low-lying metal-to-ligand and intraligand charge transfer (MLCT/ILCT) transitions and high-lying ILCT transitions are red-shifted with the increase in the π-donating ability of the L ligand and the π electron-donating ability of R substituent. The calculation revealed that the phosphorescence originated from 3MLCT/3ILCT excited state. However, the complex 3a displayed different types of MLCT/ILCT excited state compared with that of 1a2c, and the different types of transition were also found in the absorption. In addition, we found that the phosphorescence quantum efficiency of Os(II) complexes is related to the metal composition in the high-energy occupied molecular orbitals, it will be helpful to designing highly efficient phosphorescent materials.  相似文献   

2.
Nickel(II) and copper(II) complexes of two unsymmetrical tetradentate Schiff base ligands [Ni(Me-salabza)] (1), [Cu(Me-salabza)] (2) and [Ni(salabza)] (3), {H2salabza = N,N′-bis[(salicylidene)-2-aminobenzylamine] and H2Me-salabza = N,N′-bis[(methylsalicylidene)-2-aminobenzylamine]}, have been synthesized and characterized by elemental analysis and spectroscopic methods. The crystal structures of 2 and 3 complexes have been determined by single crystal X-ray diffraction. Both copper(II) and nickel(II) ions adopt a distorted square planar geometry in [Cu(Me-salabza)] and [Ni(salabza)] complexes. The cyclic voltammetric studies of these complexes in dichloromethane indicate the electronic effects of the methyl groups on redox potential.  相似文献   

3.
The reactions of five dinuclear carbonyl complexes [(η 5-C5Me4R)Mo(CO)3]2 [R = allyl, n Bu, t Bu, Ph, Bz] with I2 in chloroform solution gave the corresponding mononuclear substituted tetramethylcyclopentadienyl molybdenum carbonyl complexes [(η 5-C5Me4R)MoI(CO)3] [R = allyl (1), n Bu (2), t Bu (3), Ph (4), Bz (5)]. The molecular structures of complexes 2, 3 and 5 were determined by X-ray diffraction analysis. The results show that the substituent in the ring can directly affect the Mo–I bond distances; the more sterically hindered the substituent, the longer the Mo–I bond. Friedel–Crafts reactions of aromatic compounds with a variety of alkylation reagents catalyzed by the complexes showed that all of these mononuclear molybdenum carbonyl complexes have catalytic activity in Friedel–Crafts alkylation reactions. Indeed, compared with traditional catalysts, these mononuclear metal carbonyl complexes have obvious advantages such as higher activities, mild reaction conditions, high selectivity, simple post-processing, and environmentally friendly chemistry.  相似文献   

4.
A series of six alkyl-substituted tetramethylcyclopentadienyl mononuclear metal carbonyl complexes [(η 5-C5Me4R)Re(CO)3] [R = allyl (1), i-Pr (2), n-butyl (3), t-butyl (4), benzyl (5), CH(CH2)4 (6)] have been synthesized by treating the corresponding ligands (C5Me4R) [R = allyl, i-Pr, n-butyl, t-butyl, benzyl, CH(CH2)4] with Re2(CO)10 in refluxing xylene. The six new complexes were characterized by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy. The crystal structures of all six complexes were determined by X-ray crystal diffraction analysis, showing that they have similar molecular structures, being mononuclear carbonyl complexes. In each of these complexes, the Re atom is η 5 -coordinated to the cyclopentadienyl ring. Complexes 15 have significant catalytic activity in Friedel–Crafts reactions of aromatic compounds with alkylation reagents. Compared with traditional catalysts, these mononuclear rhenium carbonyl complexes have obvious advantages such as lower amounts of catalyst, mild reaction conditions and environmentally friendly chemistry.  相似文献   

5.
To utilized a mononuclear fragment of [Cu(L)Cl]ClO4 (1) and TPHA bridged-ligand as building block by self-assembly technology, a new dinuclear copper(II) compound [(CuL)2(μ-TPHA)](ClO4)2 · 4H2O (2), where L = 1,3,6,9,11,14-hexaazatricyclo[12.2.1.16,9]octadecane, TPHA = terephthalate dianion, has been constructed and structurally characterized by X-ray crystallography. Crystal analyses denotes that crystal water molecules interact with each other give rise to a tetrameric cluster of water, which by sharing dinuclear units result in a 1D chain structure. Complex 2 crystallizes in monoclinic, space group P21/c, with a = 11.1586(14), b = 13.2240(16), c = 16.241(2) Å and β = 105.636(2)°. Magnetic measurements confirm that 2 present an antiferromagnetic interaction between the paramagnetic ions.  相似文献   

6.
Two Pd(II) complexes involving Schiff base ligands, namely, [Pd(L1)2] (1), [Pd2(L2)Cl2] (2) [HL1 = 2-((2,6-diisopropylphenylimino)methyl)-4,6-dibromophenol, L2 = N-(4-isopropylbenzylidene)-2,6-diisopropylbenzenamine] have been synthesized using solvothermal methods and characterized by elemental analysis, IR-spectroscopy, thermogravimetric analysis, powder X-ray diffraction, UV–vis absorption spectra, and single-crystal X-ray diffraction. Complex 1 is a mononuclear cyclometalated Pd(II) complex, whereas complex 2 is a μ-chloro-bridged dinuclear. Both 1 and 2 display photoluminescence in the solid state at 298 K and possess fluorescence lifetimes (τ 1 = 86.40 ns, τ 2 = 196.21 ns, τ 3 = 1,923.31 ns at 768 nm for 1, τ 1 = 69.92 ns, τ 2 = 136.40 ns, τ 3 = 1,714.26 ns at 570 nm for 2). The Suzuki reactions of 4-bromotoluene with phenylboronic acid by complexes 12 have also been studied.  相似文献   

7.
The effect of β-trimethylsilyl (TMS) substituent on the structure, stability, natural charges, electrostatic potential map, natural bond orders, rotational energy barrier, and hyperconjugative interactions of five acyclic β-silyl carbocation derivatives of RR′C+–CH2Si(Me)3 including α-dimethyl 1 (R,R′ = Me), α-methyl phenyl 2 (R = Me, R′ = Ph), α-methyl para-aminophenyl 3 (R = Me, R′ = p-NH2Ph), α-methyl para-nitrophenyl 4 (R = Me, R′ = p-NO2Ph) and diphenyl 5 (R,R′ = Ph) was investigated in the gas phase and in solution using polarized continuum model (PCM) at B3LYP/6-311 ++G** level of theory. The resonance structures weighting of cations 15 were determined using natural resonance theory (NRT). The contribution of carbenium ion (RR′C+–CH2Si(Me)3) and silylium ion (RR′C=CH2 Si(Me) 3 + ) to the stability depend upon substituents. The former form dominants when R,R′ = Ph, but the latter is major the contributor when R,R′ = Me. The weighting of carbocation forms of β-silyl benzyl cation overwhelms silylium cation due to the delocalization of positive charge on the phenyl ring. The calculated molecular orbital (MO) diagrams, energy decomposition analysis (EDA) and 29Si and 13C nuclear magnetic resonance (NMR) chemical shifts complement these predictions.  相似文献   

8.
Three bis-triazole-bis-amide-based copper(II) complexes with different dimensionality, [Cu(dtcd)2 (1,3-HBDC)2]·2H2O (1), [Cu(dtcd) (1,3,5-H2BTC)2]·2H2O (2) and [Cu4(μ 3-OH)2(dtcd)2(SIP)2]·4H2O (3) (dtcd = N,N′-di(4H-1,2,4-triazole) cyclohexane-1,4-dicarboxamide, 1,3-H2BDC = 1,3-benzenedicarboxylic acid, 1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid, NaH2SIP = sodium 5-sulfoisophthalate), have been synthesized under different pH values and structurally characterized. Complex 1 exhibits a zero-dimensional mononuclear structure with one carboxyl group of 1,3-HBDC coordinating to copper(II), while the other carboxyl group is protonated. In complex 2, the CuII ions are bridged by the dtcd ligands forming a one-dimensional chain, in which only one carboxyl group of 1,3,5-H2BTC coordinates with the metal, while the others are protonated. Complex 3 possesses a two-dimensional network based on tetranuclear Cu4 clusters supported by the dtcd and nonprotonated SIP ligands. The various structures clearly indicate that the pH and polycarboxylates have a great influence on the dimensionality and structures of 13. The luminescence properties of 13 and magnetic properties of 3 were investigated.  相似文献   

9.
The reactions of N-(2(diphenylphosphino) benzylidene) (phenyl) methanamine, Ph2PPhNHCH2-C5H4N, 1 and N-(2-(diphenylphosphino) (benzylidene) (thiophen-2-yl) methanamine, Ph2PPhNHCH2-C4H3S, 2 with MCl2(cod) and MCl(cod)Me (M = Pd, Pt; cod = 1,5-cyclooctadiene) yield the new complexes [M(Ph2PPhNHCH2-C5H4N)Cl2], M = Pd1a, Pt1b, [M(Ph2PPhNHCH2-C5H4N)ClMe], M = Pd1c, Pt 1d, [M(Ph2PPhNHCH2-C4H3S)Cl2], M = Pd2a, Pt 2b, and [M(Ph2PPhNHCH2-C4H3S)ClMe], M = Pd2c, Pt 2d, respectively. The new compounds were isolated as analytically pure crystalline solids and characterized by 31P-, 1H-NMR, IR spectroscopy, electro spray ionization-mass spectrometry (ESI-MS) and elemental analysis. The representative solid-state molecular structures of the platinum complexes 1b and 2b were determined using single crystal X-ray diffraction analysis and revealed that the complexes exhibit a slightly distorted square-planar geometry. Furthermore, the palladium complexes were tested as potential catalysts in the Heck and Suzuki cross-coupling reactions.  相似文献   

10.
A series of strongly phosphorescent copper(I) halide complexes, namely [Cu(μ-X)POP]2 (X = Cl (1), Br (2), I (3), Br0.5Cl0.5 (4), POP = bis[2-(diphenylphosphino)phenyl]ether), have been synthesized by reacting CuX with the diphosphine ligand in 1:1 molar ratio. All complexes were characterized by spectroscopic analysis (IR, UV–Vis), elemental analysis, and photoluminescence study. Single-crystal X-ray diffraction revealed that complex 2 is a dinuclear structure which is constructed by two μ-X bridges and two POP ligands as μ2 bridges. Other complexes were determined as isologues of complex 2 by powder X-ray diffraction and elemental analysis. All complexes exhibit intense blue-green phosphorescence with a lifetime of ~1 μs in the solid state. The halogen-mixed complex presents a lightly change in the luminescence comparing to that of parent complexes. The excited states of all complexes have been assigned as halide-to-ligand charge transfer state mixed metal-to-ligand charge transfer character based on the time-dependent density functional theory calculations. All complexes are thermally stable according to thermogravimetric analysis so that they are suitable for applying in luminescent devices.  相似文献   

11.
The synthesis, IR spectra and single-crystal structures of two Mn(II) and one Zn(II) azido complexes with halo-substituted pyridine derivative ligands are reported: [Mn(N3)-2(3-Brpy)2(H2O)]2(3-Brpy)2 (1), [Mn(N3)2(3-Brpy)2] n (2) and [Zn(N3)2(3-amino,2-chloropyridine)] n (3) with 3-Brpy = 3-bromopyridine. In the dinuclear Mn(II) complex 1 and polymeric 1D Zn(II) complex 3, di-EO only azido bridges exist, whereas in the polymeric Mn(II) 1D system of 2, a rather less common di-EO/di-EO/di-EE azido bridging sequence has been observed (EO = end-on, EE = end-to-end). The halo-substituted pyridine derivatives act in the three compounds as terminal ligands and in 1 also as solvent molecules.  相似文献   

12.
Mononuclear copper(II) complexes of 1,2,4-triazole-based Schiff base macrocyclic hydrazones, III and IV, have been reported. The prepared amorphous complexes have been characterized by spectroscopic methods, electron spray ionization mass spectrometry, and elemental analysis data. Electrochemical studies of the complexes in DMSO show only one quasi-reversible reduction wave at +0.43 V (ΔE = 70 mV) and +0.42 V (ΔE = 310 mV) for III and IV, respectively, which is assigned to the Cu(II) → Cu(I) reduction process. Temperature dependence of magnetic susceptibilities of III and IV has been measured within an interval of 2–290 K. The values of χM at 290 K are 1.72 × 10?3 cm3 mol?1 and 1.71 × 10?3 for III and IV, respectively, which increases continuously upon cooling to 2 K. EPR spectra of III and IV in frozen DMSO and DMF were also reported. The trend g|| > g⊥ > ge suggests the presence of an unpaired electron in the dx2?y2 orbital of the Cu(II) in both complexes. Furthermore, spectral and antimicrobial properties of the prepared complexes were also investigated.  相似文献   

13.
Four new triorganotin(IV) complexes, [R3Sn(O2SeC6H4-4-Et)]4 (R = Me 1), [R3Sn(O2SeC6H4-4-Et)] n (R = Ph 2), [R3Sn(O2SeC6H4-2-Et)] n (R = Me 3; Ph 4) have been synthesized by the treatment of 4-ethylbenzeneseleninic acid, 2-ethylbenzeneseleninic acid, and the corresponding triorganotin(IV) chloride with sodium ethoxide in methanol. All of the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, and 119Sn) spectroscopy, TGA, and X-ray crystallography. Crystal structures show that all of the complexes are generated by the bidentate oxygen atoms and the five-coordinated tin centers with trigonal bipyramid geometry. The structural analyses reveal that complex 1 has a centrosymmetric tetranuclear triorganotin selenite with 16-membered macrocycle, which is formed by trimethyltin and ligand alternate linking. A series of C–H···O and ππ stacking interactions in complex 1 play an important function in the supramolecular aggregation. Complex 3 has two 1D spring-like chiral helical chains and crystallizes in the monoclinic space group P21, which is chiral. Complex 2 and 4 are both 1D infinite neutral chain polymers and complex 2 forms a 2D supramolecular framework through intermolecular C–H···O interactions.  相似文献   

14.
The effect of energetic γ-radiation on 1H NMR, electronic absorption, ESR spectra, differential thermal analysis (DTA) and solid state dc electrical conductivity of the ligand N-phenyl-2-(2-(phenylamino)acetyl)hydrazine carbothioamide (H2L) and its copper(II) complexes; Cu(HL)(OAc)H2O, Cu(HL)BrH2O and Cu(H2L)2(NO3)2?3H2O before and after γ-irradiation (hereafter referred to as (B), (B 1 ), (B 2 ), (B 3 ) and (A), (A 1 ), (A 2 ), (A 3 ), respectively) has been studied. Electronic spectral bands of the complexes after irradiation exhibited some better resolved shapes with a remarkably higher absorbance, ESR spectrum of complex Cu(HL)BrH2O (B 2 ) before irradiation showed isotropic spectrum with g iso = 2.075 however, after irradiation (A 2 ) displayed axial ESR spectrum with g  > g  > 2.0023 and d (x2?y2) ground state. DTA of the compounds reveals that γ-irradiation induced generation of new peaks as well as changes in the peak intensities. Solid state dc electrical conductivity for complexes was investigated before and after γ-irradiation. Complexes were found to be semiconductors, the activation energies (E a) were calculated for the complexes by using the Arrhenius plot.  相似文献   

15.
(E)-11H-Bisbenzo[a]fluorenylidene (E-6) was synthesized by Barton’s double extrusion diazo-thione coupling method from 11H-benzo[a]fluoren-11-thione (11) and 11-diazo-11H-benzo[a]fluorene (13). The reaction is probably thermodynamically controlled; in the event that the less stable Z -6 is also formed, it would rapidly undergo Z → E diastereomerization to give E -6. The B3LYP/6-311G(d,p) calculated diastereomerization barrier for Z -6 → E -6 is ΔG 298 = 57.0 kJ/mol (13.6 kcal/mol). The calculated equilibrium constant K eq(E -6 → Z -6) = 92:8 (at 298 K) is indicative of a marked diastereoselectivity of the reaction leading to E -6. The structure of E-6 was established by 1H-NMR and 13C-NMR spectroscopies and by X-ray analysis. PAE E-6 crystallizes in the monoclinic space group C2/c. The unit cell of the crystal structure E -6 contains eight molecules, arranged as four pairs of enantiomers. PAE E -6 adopts a twisted conformation with the pure twist of the central C11=C11′ bond ω = 39°. The dihedral angle ν in E -6 is 60.6°, which is significantly higher than the respective dihedral angle in PAEs Z -6, 2, E -7, Z -7, 14, and 15. The large syn-pyramidalization angles at C11 and C11′ (χ = 12.6° and 14.8°) of E-6 indicates the enhanced strain in the fjord regions of the molecule. The enhanced twist is primarily attributed to the double benzo[a]annelation of the bifluorenylidene moiety at the fjord regions. The B3LYP/6-311G(d,p) calculated structure of E -6 is in a very good agreement with the experimental X-ray structure. PAE E -6 adopts a twisted conformation in solution, with the downfield chemical shift of H1/H1′ (8.31 ppm); H10/H10′ (δ = 7.20 ppm) and H9/H9′ (δ = 6.86 ppm) in E -6 are positioned above the planes of the opposing naphthalene rings. PAEs E -6 and Z -6 are significantly higher in energy than their corresponding benzo[b]annelated isomers E -7 and Z -7.  相似文献   

16.
Four new cobalt(II)-based metal–organic coordination polymers, namely {[Co(L)(ox)]·3H2O}n (1), [Co2(L)(chda)2]n (2), {[Co(L)(mip)(H2O)]·H2O}n (3) and [Co(L)(oba)]n (4), [L = N,N′-bis(pyridine-3-yl)pyridine-3,5-dicarboxamide, H2ox = oxalic acid, H2chda = trans-1,4-cyclohexanedicarboxylic acid, H2mip = 5-methylisophthalic acid, H2oba = 4,4′-oxybis(benzoic acid)] were hydrothermally synthesized and structurally characterized by IR, TG, PXRD and single-crystal X-ray diffraction. In 1, the oxalate anions display μ 2-bridging mode connecting the adjacent 1D [Co–L]n zigzag chains to afford a 2D layer. In 2, the chda anions take the μ 4-bridging mode connecting the neighboring four CoII ions to construct a [Co–chda]2n 1D double chain, which contains the Co2(CO2)4 paddle-wheel subunit. These double chains are further linked by L ligands to furnish a 2D layer. In 34, Co(II) ions are linked by L ligands to give rise to a 1D left-, right-helical chain [Co–L]n, respectively. These helical chains are further linked by μ 2-bridging mip and oba anions to furnish a 2D network, respectively. The Co(II) ions, L ligands and dicarboxylates exhibit different coordination modes and conformations. The effect of organic dicarboxylates with different rigidity and length on the structures of the Co(II) complexes is discussed. The fluorescence, electrochemical behaviors and photocatalytic activities of the title complexes are reported.  相似文献   

17.
New Mn(III) complexes with Schiff bases and dicyanamide are synthesized: [Mn(Salpn)N(CN)2] n (two polymorphous modifications, Ia and Ib), {[Mn(5-BrSalen)N(CN)2] · CH3OH} n (II), and [Mn(3-MeOSalen)N(CN)2(H2O)] (III), where SalpnH2 = N,N′-bis(salicylidene)-1,3-diaminopropane, 5-BrSalenH2 = N,N′-bis(5-bromosalicylidene)-1,2-diaminoethane, and 3-MeOSalenH2 = N,N′-bis(3-methoxysalicylidene)-1,2-diaminoethane. Complexes Ia, Ib, and II have the polymer structure in which the dicyanamide anion binds the paramagnetic Mn(III) complexes with the Schiff bases into one-dimensional chains. Unlike them, in complex III the monomer units containing water and the dicyanamide anion as terminal ligands form dimers due to hydrogen bonds. The study of the magnetic properties of complexes Ia and II shows a weak antiferromagnetic interaction between the Mn3+ ions through the dicyanamide bridges in these complexes.  相似文献   

18.
Full crystallographic characterization has been obtained for [Hg(SBz)2] (9), ClHgSBz · TMEDA (10), [ClHgS-i-Pr] (11), [ClHg(S-neo-Pent)·0.5Py] (12), In[S-2,4,6-(i-Pr)3C6H2]3·2MeCN (13), [In(S-2-MeO,5-Me, C6H3)3]2 (14) and In(S-o-C6H4CH2N(CH3)2)3 (15). Relevent metal thiolate interactions, terminal and bridging, are highlighted within the realm of thermolytic conversion of these species into binary metal thiolates. Pertinent crystallographic data for these compounds include:9: C2/c,a=22.599(4)Å,b=4.334(1)Å,c=29.596(5)Å,β=106.76(1)°,V=2775.6Å3,Z=8,R=3.6%;10: P $\bar 1$ ,a=8.136(2)Å,b=9.958(7)Å,c=11.834(3)Å,α=108.71(2)°,β=92.93(2)°,γ=109.05(2)°,V=845.3Å3,Z=2,R=5.0%;11: C2,a=21.430(7)Å,b=4.678(2)Å,c=6.724(2)Å,β=90.43°,V=674.0Å3,Z=2,R=3.9%;12: C2,a=16.732(2)Å,b=11.200(1)Å,c=11.929(2)Å,β=104.21(1)°,V=2167.1Å3,Z=4,R=3.5%;13: P $\bar 1$ ,a=13.680(8)Å,b=13.815(6)Å,c=15.155(9)Å,α=77.77(4)°,β=72.57(4)°,γ=88.18(4)°,V=2669.1Å3,Z=8,R=12.0%;14: C2,a=8.323(2)Å,b=24.970(4)Å,c=12.466(2)Å,β=104.32(2)°,V=2510.1Å3,Z=4,R=8.2%;15: P21/c,a=17.587(5)Å,b=11.786(2)Å,c=13.865(2)Å,β=101.66(2)°,V=2814.6Å3,Z=4,R=3.2%. The molecules-to-materials transition, from a relatively simple divalent system, to the more mechanistically complex trivalent metal system is outlined.  相似文献   

19.
Three new Schiff base complexes, namely [Mn(L)Cl] · H2O (1), [Co(L)Cl]2 · 2CH3COCH3 (2) and [Co(L)NCS]2 (3), where H2L = 2,2′-[propane-1,2-diylbis(nitriloeth-1-yl-1-ylidene)]diphenol, have been prepared and characterized. The syntheses of 1 and 2 have been achieved by reacting equimolar amounts of the respective metal chloride and the tetradentate Schiff base ligand (H2L). While the mononuclear Mn(III) complex 1 was obtained with MnCl2 in acetone medium, the same synthetic system yielded the binuclear Co(III) complex 2 in the presence of CoCl2. Dissolution of 1 and 2 followed by crystallization with ammonium thiocyanate in methanol yielded two isostructural phenoxo-bridged binuclear complexes, namely [Mn(L)NCS]2 (previously reported by us) and a new complex [Co(L)NCS]2 (3), respectively. All the complexes 13 have been characterized by microanalytical, spectroscopic, single crystal X-ray diffraction and other physicochemical studies. Structural studies reveal that 1 adopts a distorted tetragonal pyramidal geometry while 2 and 3 comprise dimeric Co(III) units with bridging phenolate oxygen atoms. All the complex units in 1–3 and the respective solvent molecules are held together by weak intermolecular H-bonding to constitute a supramolecular network in the solid state. The antibacterial activity of the complexes has been tested against some Gram(+) and Gram(?) bacteria.  相似文献   

20.
Polycrystalline thorium(IV) phosphate-triphosphate, Th2(PO4)(P3O10) (1), was obtained by (NH4)2Th(PO4)2·H2O (2) heating from room temperature to 1,273 K. 1 crystallizes in the orthorhombic space group Pn21 a (a = 11.6846(2) Å, b = 7.1746(1) Å, c = 12.9320(3) Å, Z = 4). Combining powder synchrotron X-ray diffraction data and DFT geometry optimization, a structural model is proposed for 1. The structure is built on ThO8 polyhedral chains along the b-axis. PO4 3? and P3O10 5? groups coexist in the structure and the latter group forms non-linear chains. Cohesion of the structure is made by the linkage of ThO8 chains by PO4 and P3O10 groups. Thermal transformation from 2 to 1 was monitored by thermogravimetric analysis (activation energy as a function of the extent of conversion was obtained from Kissinger–Akahira–Sunose (KAS) isoconversional method) and powder X-ray thermo-diffraction. For 2, the dehydration process takes place in two steps, with the apparition of a layered intermediate phase, (NH4)2Th(PO4)2·nH2O (0 < n < 1, d = 6.42 Å), previously to the formation of (NH4)2Th(PO4)2 (d = 6.31 Å). The condensation process produces an amorphous material that crystallizes to α-ThP2O7 (3) when the temperature increases. At 1,273 K, 3 slowly transforms to 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号