首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aqua cultured fish (sea bream) were irradiated by Cobalt-60 at commercial irradiation facility at dose of 2.5 and 5 kGy at 2–4 °C. The proximate composition, fatty acid and amino acid composition changes of irradiated aqua cultured sea bream (Sparus aurata) of Aegean Sea were investigated. Total saturated (28.01%) and total monounsaturated (28.42%) fatty acid contents of non-irradiated decreased content of 27.69–27.97% for 2.5 kGy irradiated groups and increased content of 28.33–28.56% for 5 kGy irradiated groups after irradiation process. Total polyunsaturated fatty acid content for irradiated samples was lower than that of non-irradiated samples. Aspartic acid, glutamic acid, serine, glycine, arginine, alanine, tyrosine, cystine, tryptophan, lysine and proline contents for 2.5 and 5 kGy irradiated sea bream are significantly different (p<0.05).  相似文献   

2.
Fresh-cut Iceberg lettuce packaged in modified atmosphere packages and spinach in perforated film bags were irradiated with gamma rays at doses of 0, 1, 2, 3, and 4 kGy. After irradiation, the samples were stored for 14 days at 4 °C. O2 levels in the packages of fresh-cut Iceberg lettuce decreased and CO2 levels increased with increasing radiation dose, suggesting that irradiation increased respiration rates of lettuce. Tissue browning of irradiated cut lettuce was less severe than that of non-irradiated, probably due to the lower O2 levels in the packages. However, samples irradiated at 3 and 4 kGy had lower maximum force and more severe sogginess than the non-irradiated control. In addition, ascorbic acid content of irradiated lettuce was 22–40% lower than the non-irradiated samples after 14 days of storage. The visual appearance of spinach was not affected by irradiation even at a dose of 4 kGy. Consumer acceptance suggested that more people would dislike and would not buy spinach that was treated at 3 and 4 kGy as compared to the non-irradiated sample. Overall, irradiation at doses of 1 and 2 kGy may be employed to enhance microbial safety of fresh-cut Iceberg lettuce and spinach while maintaining quality.  相似文献   

3.
The efficacy of gamma irradiation as a method of decontamination for food and herbal materials is well established. In the present study, Glycyrrhiza glabra roots were irradiated at doses 5, 10, 15, 20 and 25 kGy in a cobalt-60 irradiator. The irradiated and un-irradiated control samples were evaluated for phenolic contents, antimicrobial activities and DPPH scavenging properties. The result of the present study showed that radiation treatment up to 20 kGy does not affect the antifungal and antibacterial activity of the plant. While sample irradiated at 25 kGy does showed changes in the antibacterial activity against some selected pathogens. No significant differences in the phenolic contents were observed for control and samples irradiated at 5, 10 and 15 kGy radiation doses. However, phenolic contents increased in samples treated with 20 and 25 kGy doses. The DPPH scavenging activity significantly (p<0.05) increased in all irradiated samples of the plant.  相似文献   

4.
The effect of electron beam irradiated hog and sheep casings (1, 3, and 8 kGy) on the physicochemical properties and shelf stability of emulsion sausage was evaluated. There were no significant differences in pH, instrumental color, sensory properties (overall acceptability), and hardness between all the samples. The cooking yields for the irradiated treated samples were larger than that of the yields obtained for the non-irradiated samples for both the hog and sheep casing. The irradiated natural casings accelerated lipid oxidation, and inhibited the formation of volatile basic nitrogen and the increase in total aerobic bacteria. In conclusion, the natural casings irradiated below at a dose of 3 kGy had no effect on physicochemical and sensory properties of the emulsion sausages, however, that improved the shelf-stability over 5 weeks. Therefore, natural casings irradiated at moderate doses are suitable for sausage production.  相似文献   

5.
Influence of gamma irradiation and storage on the microbial load, chemical and sensory quality of chicken kabab was investigated. Chicken kabab was treated with 0, 2, 4 or 6 kGy doses of gamma irradiation. Treated and untreated samples were kept in a refrigerator (1–4 °C). Microbiological, chemical and sensory characteristics of chicken kabab were evaluated at 0–5 months of storage. Gamma irradiation decreased the microbial load and increased the shelf-life of chicken kabab. Irradiation did not influence the major constituents of chicken kabab (moisture, protein and fats). No significant differences (p>0.05) were observed for total acidity between non-irradiated (control) and irradiated chicken kabab. Thiobarbitric acid (TBA) values (expressed as mg malonaldehyde (MDA)/kg chicken kabab) and volatile basic nitrogen (VBN) in chicken kabab were not affected by the irradiation. Sensory evaluation showed no significant differences between irradiated and non-irradiated samples.  相似文献   

6.
Licorice root products were irradiated at doses of 0, 5, 10, 15 and 20 kGy in a 60Co package irradiator. Irradiated and unirradiated samples were stored at room temperatures. Microbial population on product, chemical changes and sensory properties of produced solution of licorice root products were evaluated after 0 and 12 months of storage. The results indicated that gamma irradiation reduced the counts of microorganisms on licorice root products. D10 of total count and klebsiella spp. were about 1.4 and 0.7 kGy, respectively. The mineral ions (Na, Ca and K) concentration in solution produced from irradiated products were lower than non-irradiated ones. Glycyrrhezinic acid and maltose concentration in solution produced from irradiated products were higher than non-irradiated ones. Sensory evaluation indicated that no significant differences (P<0.05) were found between solution produced from irradiated and unirradiated products in color, flavor, texture, or taste.  相似文献   

7.
Effects of gamma irradiation on nutritional, physiological, physicochemical and sensory properties of the Korean lactic acid fermented vegetable, Kimchi, were investigated. The composition of amino acids and organic acids in Kimchi were not influenced by gamma irradiation less than 10 kGy. Angiotensine converting enzyme inhibitory, xanthin oxidase inhibitory, electron donating and antimicrobial activity of Kimchi extract were stable up to 10 kGy. There were no significant changes in pH and texture at less than 10 kGy. Color values were influenced at 10 kGy of gamma irradiation, and resulted in the increase of L*- and reduction of a*-value. About 90% of panelists identified a sensory difference between non-irradiated and 10 kGy-irradiated sample, and Kimchi irradiated at 10 kGy had lower scores in acceptability than those of the control or irradiated at 2.5 and 5 kGy.  相似文献   

8.
Butyl rubber (IIR) is an isobutylene/isoprene copolymer and is provided with good properties including low permeability to gases, good thermal stability and high resistance to oxygen and ozone action, among others. It is well known that the major effect of ionizing radiations on butyl rubber is chain scission accompanied with a significant reduction in molar mass. This work aimed to study the effects of gamma radiation on the properties of butyl rubbers vulcanized by three different curing systems, such as, the ones based on sulfur, sulfur donor and phenolic resin to identify which curing system is the most stable under irradiation. The butyl rubber vulcanized by three different systems was gamma irradiated with doses of 25 kGy, 50 kGy, 100 kGy, 150 kGy and 200 kGy. Irradiated and non-irradiated samples were characterized by the following techniques: tensile, elongation and hardness. It was observed that doses higher than 150 kGy practically destroy the assessed properties for all butyl compounds, irrespective of the vulcanization system used; however compounds cured with phenolic resin showed a decrease in properties proportional to the dose.  相似文献   

9.
Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on soybeans, isoflavone, tocopherol contents, raffinose family oligosaccharides, color and sensory properties were evaluated as a function of irradiation dose. The results indicated that gamma irradiation reduced aerobic bacterial and fungal load. Irradiation at the doses applied did not cause any significant change (p>0.05) in the contents of isoflavone of soybeans, but decreased tocopherol contents. The content of key flatulence-producing raffinose family oligosaccharides in irradiated soybeans (10.0 kGy) decreased by 82.1% compared to the control. Sensory analysis showed that the odor of the soybeans was organoleptically acceptable at doses up to 5.0 kGy and no significant differences were observed between irradiated and nonirradiated samples in flavor, texture and color after irradiation.  相似文献   

10.
A variety of ready-to-cook meat products available in Indian supermarkets (mutton mince, chicken mince, chicken chunks, and chicken legs) were studied. The samples were irradiated (2.5 kGy), or left untreated as control, and stored at 0–3 °C for up to 21 days. The effect of irradiation on the microbiological, chemical, and sensory properties was evaluated at intervals during the storage period. Irradiated samples had a longer shelf-life at 0–3 °C compared with the corresponding non-irradiated samples. Fecal coliforms were eliminated by irradiation treatment. Radiation processed samples had lower counts of Staphylococcus spp. There were no significant organoleptic changes in irradiated samples stored at chilled temperatures.  相似文献   

11.
The commercially packed samples of raisins, dried figs and dried apricots were irradiated using doses in the range of 0.5–1.0 kGy for disinfestation and 0.5–5.0 kGy for sensory analysis with the dose rate ranging from 1.44 to 1.92 kGy/h. Pests on dried fruits were evaluated after 0, 1, 2 and 3 months of storage for irradiated dried figs and 1, 3, 6 and 12 months of storage for raisins and dried apricots. Sensory analysis of dried figs, dried apricots and raisins were carried out after 0, 1, 3, 6 and 12 months of storage. The results indicated that radiation processing at low doses, (∼1.0 kGy) is an effective post-harvest treatment and quarantine control for these products with no adverse effects on sensory (marketing) attributes.  相似文献   

12.
A three-step infrared (IR) macro-fingerprint method combining conventional IR spectra, and the secondary derivative spectra with two-dimensional infrared correlation spectroscopy (2D-IR), was developed to analyze Spirulina powder before and after gamma irradiation. In the IR spectra, most of the absorption peaks of samples irradiated at 1, 2.7, 6, and 10.4 kGy had lower intensities than the non-irradiated ones, whereas peaks at 1152, 1078, and 1051 cm−1 were slightly enhanced with irradiation at 2.7, 6, and 10.4 kGy. Their second derivative spectra amplified the differences and revealed that irradiation affected the C=O band of carboxylic acid and esters, and the N–H band of proteins. The peaks at 1746 and 1741 cm−1, and those at 1730 and 1725  cm−1 became two broad peaks. Meanwhile, the three sharp peaks at 1548 cm−1, 1544 cm−1 and 1536 cm−1 changed to two broad peaks at around 1547 and 1534 cm−1 after irradiation at doses higher than 1 kGy. The characteristic IR bands from 1700 cm−1 to 1600 cm−1, which represent the C=O band in proteins, also have different shapes and intensities after irradiation. The finding indicated that irradiation affected the secondary structures of protein which was confirmed by curve fitting results. During the process of increasing the temperature from 50 to 210 °C, the ratio of amide I to II in absorption intensities in the 2D-IR spectra of the irradiated samples varied with different response for different samples. Saccharides in Spirulina powder had a higher thermostability than proteins, but the autopeaks of irradiated samples did show differences from the non-irradiated sample. The intensity of autopeaks at 1012 cm−1 increased dramatically in the irradiated samples while that of peaks at 1053, 1071, and 1083 cm−1 decreased after irradiation. Based on the three-step IR macro-fingerprint method, irradiated Spirulina powder samples were successfully and fast identified and discriminated.  相似文献   

13.
The ethanolic extracts of red beet (Beta vulgaris L.) hairy root were used to investigate the removal of color and improvement of biological activity for enhanced industrial applications. The extracts were exposed to gamma rays ranging from 2.5 to 30 kGy. The red beet hairy root is composed of two major red-colorants, betanin and isobetanin. Gamma ray radiation at 5 kGy remarkably reduced the levels of the major colorants by 94% and the reddish color was eliminated by doses greater than 10 kGy. Color removal was likely due to the gamma ray radiolysis of ethanol. Although details on the mechanism responsible for the decay of the chromophore have not been entirely determined, our results suggest that the free radicals that are produced during this process are capable of destroying the chromophore group in isobetanin, thus bleaching the substrate solution. In spite of the degradation of the major colorants, the biological activities of constituents of the extract such as DPPH radical scavenging and tyrosinase inhibition were negligibly affected by the gamma ray radiation up to 20 kGy. The antioxidant activity was 92.7% in control samples and 90.0–92.0% in irradiated samples (2.5–20 kGy), and a slight decrease to 87.5% was observed for gamma ray radiation at 30 kGy. In addition, tyrosinase inhibition activity has also the same pattern; the activity is slightly increased from 50.7% of control to 49.1–52.8% of irradiated samples (2.5–20 kGy) with a 46.8% at 30 kGy.  相似文献   

14.
High-dose (higher than 30 kGy) irradiation has been used to sterilize specific-purposed foods for safe and long-term storage. The objective of this study was to investigate the effect of high-dose irradiation on the quality characteristics of ready-to-eat chicken breast in comparison with those of the low-dose irradiation. Ready-to-eat chicken breast was manufactured, vacuum-packaged, and irradiated at 0, 5, and 40 kGy. The populations of total aerobic bacteria were 4.75 and 2.26 Log CFU/g in the samples irradiated at 0 and 5 kGy, respectively. However, no viable cells were detected in the samples irradiated at 40 kGy. On day 10, bacteria were not detected in the samples irradiated at 40 kGy but the number of bacteria in the samples irradiated at 5 kGy was increased. The pH at day 0 was higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. The 2-thiobarbituric acid reactive substance (TBARS) values of the samples were not significantly different on day 0. However, on day 10, the TBARS value was significantly higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. There was no difference in the sensory scores of the samples, except for off-flavor, which was stronger in samples irradiated at 5 and 40 kGy than control. However, no difference in off-flavor between the irradiated ones was observed. After 10 days of storage, only the samples irradiated at 40 kGy showed higher off-flavor score. SPME-GC–MS analysis revealed that 5 kGy of irradiation produced 2-methylbutanal and 3-methylbutanal, which were not present in the control, whereas 40 kGy of irradiation produced hexane, heptane, pentanal, dimethly disulfide, heptanal, and nonanal, which were not detected in the control or the samples irradiated at 5 kGy. However, the amount of compounds such as allyl sulfide and diallyl disulfide decreased significantly in the samples irradiated at 5 kGy and 40 kGy.  相似文献   

15.
The volatile organic compounds of non-irradiated and electron-beam irradiated ‘Fuji’ apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph–mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated ‘Fuji’ apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of ‘Fuji’ apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.  相似文献   

16.
In the present study the combined effect of gamma irradiation (1, 3 and 5 kGy) and storage at two temperatures: refrigeration (+4 °C) and frozen (?18 °C), on the shelf-life extension of fresh shrimp meat was investigated. The study was based on microbiological and physicochemical changes occuring in the shrimp samples. Total volatile base nitrogen values and trimethylamine values for irradiated shrimp samples were significantly lower than non-irradiated samples at both storage temperatures, and the rate of decrease was more pronounced in samples irradiated at the higher dose (p<0.05). Thiobarbituric acid values for irradiated shrimp samples were significantly higher than non-irradiated samples at both storage temperatures (p<0.05). pH values of shrimp samples were affected significantly by both irradiating dose and storage temperatures (p<0.05). Microbial counts for non-irradiated shrimp samples were higher than the respective irradiated samples at both storage temperatures (p<0.05). The results revealed that irradiation at high dose (5 kGy) might enhance lipid oxidation, although the growth of microorganisms and protein oxidation was inhibited.  相似文献   

17.
A simple technique of microgel electrophoresis of single cells (DNA comet assay) was used to detect DNA comets in irradiated quail meat samples. Obtained DNA comets were evaluated by both photomicrographic and image analysis. Quail meat samples were exposed to radiation doses of 0.52, 1.05, 1.45, 2.00, 2.92 and 4.00 kGy in gamma cell (gammacell 60Co, dose rate 1.31 kGy/h) covering the permissible limits for enzymatic decay and stored at 2 °C. The cells isolated from muscle (chest, thorax) in cold PBS were analyzed using the DNA comet assay on 1, 2, 3, 4, 7, 8 and 11 day post irradiation. The cells were lysed between 2, 5 and 9 min in 2.5% SDS and electrophorosis was carried out at a voltage of 2 V/cm for 2 min. After propidium iodide staining, the slides were evaluated through a fluorescent microscope. In all irradiated samples, fragmented DNA stretched towards the anode and damaged cells appeared as a comet. All measurement data were analyzed using BS 200 ProP with software image analysis (BS 200 ProP, BAB Imaging System, Ankara, Turkey). The density of DNA in the tails increased with increasing radiation dose. However, in non-irradiated samples, the large molecules of DNA remained relatively intact and there was only minor or no migration of DNA; the cells were round or had very short tails only. The values of tail DNA%, tail length and tail moment were significantly different and identical between 0.9 and 4.0 kGy dose exposure, and also among storage times on day 1, 4 and 8. In conclusion, the DNA Comet Assay EN 13784 standard method may be used not only for screening method for detection of irradiated quail meat depending on storage time and condition but also for the quantification of applied dose if it is combined with image analysis. Image analysis may provide a powerful tool for the evaluation of head and tail of comet intensity related with applied doses.  相似文献   

18.
The study is aimed at the optimization of gamma irradiation treatment of sun-dried apricots for quality maintenance and quarantine purposes. Sun-dried apricots pre-treated with potassium meta-bisulphite (KMS) at 2.5% w/v were procured from progressive apricot grower of district Kargil, Ladakh region of Jammu and Kashmir state. The sun-dried apricots were packed in 250 gauge polyethylene packs and gamma irradiated in the dose range 1.0–3.0 kGy. The gamma irradiated fruit including control was stored under ambient (15±2–25±2 °C, RH 70–80%) conditions and periodically evaluated for physico-chemical, sensory and microbial quality parameters. Radiation treatment at dose levels of 2.5 and 3.0 kGy proved significantly (p≤0.05) beneficial in retention of higher levels of β-carotene, ascorbic acid, total sugars and color values without impairing the taste as perceived by the sensory panel analysists. The above optimized doses retained the β-carotene content of sun-dried apricots to the extent of 71.2% and 72.6% compared to 63.9% in control samples after 18 months of storage. Irradiation treatment facilitated the release of residual sulfur dioxide in KMS pre-treated sun-dried apricots significantly (p≤0.05) below the prescribed limit for dried products. During storage, two-fold decrease in sulfur dioxide content was recorded in irradiated samples (3.0 kGy) as compared to 16.9% in control. The above optimized doses besides maintaining the higher overall acceptability of sun-dried apricots resulted in 5 log reductions in microbial load just after irradiation and 1.0 and 1.3 log reductions in yeast and mold and bacterial count after 18 months of ambient storage.  相似文献   

19.
The purpose of this study was to evaluate microbial populations, Hunter's color values (L?, a?, b?) and the sensory quality of freeze-dried miyeokguk, Korean seaweed soup, in order to use it as space food. Microorganisms were not detected in non-irradiated freeze-dried miyeokguk within the detection limit of 1.00 log CFU/g. However, the microbial population in rehydrated miyeokguk was 7.01 log CFU/g after incubation at 35 °C for 48 h, indicating that freeze-dried miyeokguk was not sterilized by heat treatment during the preparation process. Bacteria in the freeze-dried miyeokguk were tentatively identified as Bacillus cereus, B. subtilis, Enterobacter hormaechei, and Ancinetobacter genomosp. using the 16S rDNA sequencing. In samples that were gamma-irradiated above 10 kGy, it was confirmed that all microorganisms were inactivated. Hunter's color values of the samples irradiated at doses less than 10 kGy were not significantly altered from their baseline appearance (p>0.05). Sensory evaluation showed that preference scores in all sensory properties decreased when freeze-dried miyeokguk was irradiated at doses greater than 10 kGy. Therefore, the results of this study suggest that gamma irradiation at 10 kGy is sufficient to sterilize freeze-dried miyeokguk without significant deterioration in the sensory quality, and thus, the freeze-dried and irradiated miyeokguk at 10 kGy fulfills the microbiological requirements as space food.  相似文献   

20.
The volatile compounds of γ-irradiated dried Welsh onion were isolated by simultaneous distillation–extraction (SDE) technique and then analyzed by gas chromatography–mass spectrometry (GC–MS) along with their non-irradiated counterparts. A total of 35 volatile compounds were identified in non-irradiated and 1 kGy irradiated samples and 36 volatile compounds were identified in 3, 5, 10 and 20 kGy irradiated samples so far belong to chemical classes of acid, alcohol, aldehyde, ester, furan, ketone and S-containing compound. S-containing compounds were detected as major volatile compounds of all experimental samples. Though the content of several compounds was increased after irradiation, content of major S-containing compounds was found to decreased in the process. Application of high-dose irradiation if required for microbial decontamination of dried Welsh onion is feasible as it enhanced the total concentration of volatile compounds by 31.60% and 24.85% at 10 and 20 kGy, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号