首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Surface properties of two goethites have been studied in order to compare the amount of acid surface sites and their distribution over the various surface domains. For this purpose, ammonia, pyridine and nitrogen were used as basic molecular probes. Calorimetry measurements of ammonia adsorption provided the image of the average surface acidity being moderate. This conclusion was supported by the moderate resistance of the adsorbed pyridine molecules to degassing conditions. Adsorption and desorption of pyridine prior to gaseous nitrogen adsorption resulting in masking/unmasking of acid surface sites on the goethite surface allowed confirmation of the acid character of the specific adsorption sites characterized by the high-energy adsorption of electron-donating molecular nitrogen. The amount of acid sites probed by nitrogen and ammonia were of the same order of magnitude but systematically higher for ammonia. The subsequent analysis of the argon and nitrogen derivatives of first-layer adsorption isotherm led to determine the distribution of {101} and {121} crystallographic faces and discuss the location of acid sites on these surface domains.  相似文献   

2.
The surface energetic heterogeneity of pure and poly (acrylic acid) (PAA)‐adsorbed carbon nanotubes (CNTs) were studied by a nitrogen probe adsorption technique in a wide range of pressures. The adsorption energy distributions (AEDs) were calculated from the low‐pressure data of isotherms by deconvoluting the low‐pressure experimental nitrogen adsorption isotherms. The surface of pure CNTs is heterogeneous as its AED presents four peaks at 42, 52, 57 and 78 K. It is observed that the AED of CNTs can be evidently modified by PAA adsorption. While the PAA adsorption amount increases, the high‐energy peaks at 52, 57 and 78 K gradually weaken and diminish at last, whereas the low ones such as at 42 K strengthen and new peaks arise at 27 and 32 K. It is proposed that PAA molecules prefer interacting with and screening the higher energetic sites to the lower ones. It will facilitate the understanding of the polymer adsorption on energetic heterogeneity surfaces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Adsorption isotherms for the three proteins β-casein, bovine serum albumin, and lysozyme at the air-water and oil-water interfaces have been determined independently using ellipsometry and surface radioactivity methods; the surface pressure and surface potential were also monitored. Saturated monolayer coverage occurs via irreversible adsorption of 2–3 mg M?2 of protein; the resultant films generate surface pressures of about 20 mN m?1 and are 50–60 Å thick. Molecules adsorbed in the first layer dominate the film pressures so that further adsorption causes no change in the pressure although the film thickness can increase to more than 100 Å. The molecules which give rise to this increase in film thickness are reversibly adsorbed with respect to aqueous substrate exchange. The experimental isotherm data and the Langmuir adsorption isotherm are in close agreement at low protein concentrations. However, comparison with the Gibbs adsorption equation is not valid, although reasonable agreement can be achieved if some account is taken of the fact that the protein molecules in the first layer are irreversibly adsorbed.  相似文献   

4.
The adsorption isotherms of nonionic surfactants Triton X-100 and Triton X-305 from water and cyclohexane on carbon black have been determined at 15 and 30°C. The Langmuir-type and BET-type isotherms are obtained for adsorption of Triton X-100 and Triton X-305 from water and cyclohexane respectively. Both the contact angles of water for graphite/water/air and graphite/water/cyclohexane decrease monotonously with increasing surfactant concentration. From these results, it is proposed that the adsorption of Triton X-100 and Triton X-305 on carbon black or graphite from water is monolayer. For the adsorption from cyclohexane solutions, the ethyleneoxide group of the surfactant molecules may be adsorbed onto the polar spot at the surface of carbon black, and the hydrophobic group of adsorbed molecules may direct toward the liquid phase or attaches to the nonpolar surface region around the polar spot. As the concentration increases, the ethylene oxide groups of the adsorbed molecules can be aggregated with each other via polar interactions to form hemi-reversed micelle.  相似文献   

5.
Grand canonical Monte Carlo simulations of adsorption of N2 and O2 and their mixtures in a model zeolitic cavity 14 Å in diameter were performed at 77.5 K for pressures ranging from zero up to saturation, where the adsorbed phase is in equilibrium with coexisting vapor and liquid phases. The same intermolecular potential functions were employed for gas-gas interactions in the vapor, liquid, and adsorbed phases. The gas-solid interaction potential includes dispersion-repulsion energy, induced electrostatic energy, and an ion-quadrupole term to model the interaction of the electric field in zeolites like NaX with polar molecules like N2. The simulation of the coexisting vapor and liquid phases reproduces the saturation properties of pure liquid oxygen and nitrogen at 77.5 K. Activity coefficients in the adsorbed phase derived from simulations as a function of cavity filling and composition show negative deviations from Raoult's law, even though the non-idealities in the bulk liquid phase have the opposite sign. The simulation of the surface excess isotherm for adsorption from liquid mixtures exhibits preferential adsorption of N2 and has the commonly-observed quadratic shape skewed toward the more strongly adsorbed component. Micropore condensation is observed for oxygen but not for nitrogen. The condensation of oxygen is similar to a first order phase transition but because of the small number of molecules that can fit into a micropore, coexistence of the two phases is replaced by oscillations between gas- and liquid-like densities.  相似文献   

6.
The adsorption of phenol, an aromatic compound with a hydrogen-bonding group, onto a silica surface in cyclohexane was investigated by colloidal probe atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and adsorption isotherm measurements. ATR-FTIR measurements on the silica surface indicated the formation of surface macroclusters of phenol through hydrogen bonding. The ATR-FTIR spectra were also measured on the H-terminated silicon surface to observe the effect of the silanol groups on the phenol adsorption. The comparison of the ATR-FTIR spectra for both the silicon oxide and H-terminated silicon surfaces proved that the silanol groups are necessary for the formation of phenol clusters on the surface. The surface force measurement using colloidal probe AFM showed a long-range attraction between the two silica surfaces in phenol-cyclohexane mixtures. This long-range attraction resulted from the contact of the adsorbed phenol layers for the phenol concentrations below 0.6 mol %, at which no significant phenol clusters formed in the bulk solution. The attraction started to decrease at 0.6 mol % phenol due to the exchange of the phenol molecules between the clusters in the bulk phase and on the surface. The surface density of phenol in the adsorbed layer was calculated on the basis of the long-range attraction and found to be much smaller than the liquid phenol density. The plausible structure of the adsorbed phenol layer was drawn by referring to the crystal structure of the bulk phenol and orientation of the phenol molecules on the surface, estimated by the dichroic analysis of ATR-FTIR spectroscopy. The investigation of the phenol adsorption on the silica surface in a nonpolar solvent using this novel approach demonstrated the effect of the aromatic ring on the surface packing density.  相似文献   

7.
Graphite oxide (GO) synthesized from commercial graphite was modified with aluminium or zirconium-aluminium polyoxycations and then calcined at 350 degrees C. On the samples obtained adsorption of ammonia from moist air was investigated. The surface of materials before and after exposure to ammonia was characterized using adsorption of nitrogen, XRD, SEM, FTIR, TA, CHN analysis, and potentiometric titration. The results showed that in spite of the fact that graphite composites/pillared graphites (PG) have Keggin-like ions located between the layers, that space blocked for nitrogen molecules used to determine the specific surface area. During calcinations, the deflagration of layers occurred as a result of decomposition of epoxy groups. This results in formation of disordered graphitic carbons with some mesoporosity. Even though these materials were not porous, the significant amount of ammonia was retained on the surface. Since ammonia molecule is able to specifically interact with oxygen groups of graphite oxide and Br?nsted centers of inorganic pillars, it is likely intercalated between the composite layers. While the best performance was found for GO modified with aluminium-zirconium species, after calcinations the samples containing Keggin Al(13) like cations revealed the high capacity which is linked to the high acidity of incorporated inorganic compounds.  相似文献   

8.
The heterogeneity of surface energy of graphite before and after adsorption of polyoxyethylene sorbitan monooleate (Tween80) was investigated by the nitrogen adsorption technique. The nitrogen adsorption energy distributions (AEDs) were calculated from the low-pressure isotherm data (i.e., the data of submonolayer adsorption) according to the regularization method. Based on the AED of pristine graphite, two types of dominant energetic surface are identified and assigned respectively to the basal surface and the irregular surface, including the stepped edges and defect sites. When the adsorption amount of Tween80 is raised, both the surface energy and the energy heterogeneity of graphite gradually decline. It is thus demonstrated that Tween80 prefers interacting with and screening higher energetic surfaces to lower ones.  相似文献   

9.
L. F. Herrera  D. D. Do 《Adsorption》2009,15(3):240-246
This paper studies the effects of surface structure (defective surfaces) on the molecular projection area of argon and nitrogen at 77 K. The determination of the molecular projection area is based on choice of the surface area of the structure studied and the adsorption data obtained from the GCMC simulation. Two methods were used to determine the surface area: the flat surface area that are commonly used in the literature and the geometrical surface area. The molecular projection areas of argon and nitrogen at 77 K vary with pressure over the recommended range for BET plot (reduced pressures from 0.05 to 0.3) and also they varies with the percentage of defects on the surface. Additionally, it is seen that the geometrical surface area method gives molecular projection area of defective surfaces values that are in accordance with the experimental value reported in the literature.  相似文献   

10.
The co-adsorption of ammonia and carbon monoxide on the Pt(111) surface was studied at temperatures <300 K using high-resolution electron energy loss spectroscopy (HREELS). The state of ammonia and carbon monoxide molecules in the co-adsorption layer was established to differ significantly from their state in individual adsorption layers. The adsorption of CO on a clean surface occurs with the primary filling of single-bound terminal sites, whereas the bridging sites are filled preferably by CO molecules in the presence of NH3,ads. The symmetry axis of ammonia molecules adsorbed on the clean surface is parallel to the normal to the surface, whereas in the co-adsorption layers the interaction with COads molecules results in the deviation of the symmetry axis toward the surface. Presumably, the observed changes in the state of adsorbed molecules are due to the donor-acceptor interaction inducing the electron density transfer from ammonia molecules across the metal surface to CO molecules.  相似文献   

11.
Adsorption equilibria of butane isomers and SF6 on Kureha activated carbon were investigated using the volumetric method and the tapered element oscillating microbalance (TEOM) technique. The isotherm data of the butane isomers measured by the TEOM technique are in good agreement with those determined by the volumetric method. Single-component adsorption isotherms are reported at temperatures in the range from 298 to 393 K and at pressures up to 120 kPa. SF6 molecules are mainly adsorbed in the larger micropores, resulting in a lower adsorption capacity. The amount adsorbed for n-butane is slightly higher than that for isobutane in the whole range investigated. This is attributed to the fact that the linear n-butane molecule can adsorb in the smaller micropores. The T6th model appropriately describes the equilibrium data of the butane isomers, while the isotherm data of SF6 can be fitted by the Langmuir model. The isosteric heats associated with adsorption for these three adsorptives show different loading dependences. The present study indicates that the activated carbon can be well characterized by the probe molecules having different molecular sizes.  相似文献   

12.
We report experimental nitrogen adsorption isotherms of organics-coated silicas, which exhibit a low-pressure desorption branch that does not meet the adsorption branch upon emptying of the pores. To address the physical origin of such a hysteresis loop, we propose an equilibrium thermodynamic model that enables one to explain this phenomenon. The present model assumes that, upon adsorption, a small amount of nitrogen molecules penetrate within the organic layer and reach adsorption sites that are located on the inorganic surface, between the grafted or adsorbed organic molecules. The number of accessible adsorption sites thus varies with the increasing gas pressure, and then we assume that it stays constant upon desorption. Comparison with experimental data shows that our model captures the features of nitrogen adsorption on such hybrid organic/inorganic materials. In particular, in addition to predicting the shape of the adsorption isotherm, the model is able to estimate, with a reasonable number of adjustable parameters, the height of the low-pressure hysteresis loop and to assess in a qualitative fashion the local density of the organic chains at the surface of the material.  相似文献   

13.
The adsorption of dodecyltrimethylammonium bromide (DTAB) onto natural muscovite mica and a synthetic expandable mica (EM) in aqueous solution has been investigated using both microscopic and macroscopic surface characterization techniques. The electrokinetic properties of the surfaces were monitored as a function of the concentration of DTAB using atomic force microscopy and microelectrophoresis. The adsorption isotherm of DTAB on EM was measured up to a solution concentration just below the critical micelle concentration of the surfactant. The thickness of the adsorbed layer on EM was determined using X-ray diffraction. Results indicate that the adsorbed layer consists of molecules lying quite flat on the mica surface at low concentrations and adsorbed in interleaved aggregate structures at concentrations approaching the critical micelle concentration of the surfactant in solution. Copyright 2001 Academic Press.  相似文献   

14.
The adsorption mechanism of water on the hydroxylated (001) plane of α-Al(2)O(3) was studied by measuring adsorption isotherms and GCMC simulations. The experimental adsorption isotherms for three α-Al(2)O(3) samples from different sources are typical type II, in which adsorption starts sharply at low pressures, suggesting a high affinity of water to the Al(2)O(3) surface. Water molecules are adsorbed in two registered forms (bilayer structure). In the first form, water is registered at the center of three surface hydroxyl groups by directing a proton of the water. In the second form, a water molecule is adsorbed by bridging two of the first-layer water molecules through hydrogen bonding, by which a hexagonal ring network is constructed over the hydroxylated surface. The network domains are spread over the surface, and their size decreases as the temperature increases. The simulated adsorption isotherms present a characteristic two-dimensional (2D) phase diagram including a 2D critical point at 365K, which is higher than that on the hydroxylated Cr(2)O(3) surface (319 K). This fact substantiates the high affinity of water molecules to the α-Al(2)O(3) surfaces, which enhances the adsorbability originating from higher heat of adsorption. The higher affinity of water molecules to the α-Al(2)O(3) (001) plane is ascribed to the high compatibility of the crystal plane to form a hexagonal ring network of (001) plane of ice Ih.  相似文献   

15.
The formation and adsorption of CO from CO(2) and H(2) at high pressures were studied over alumina-supported noble metal catalysts (Pt, Pd, Rh, Ru) by in situ FTIR measurements. To examine the effects of surface structure of supported metal particles and water vapor on the CO adsorption, FTIR spectra were collected at 323 K with untreated and heat (673 K) treated catalysts in the absence and presence of water (H(2)O, D(2)O). It was observed that the adsorption of CO occurred on all the metal catalysts at high pressures, some CO species still remained adsorbed under ambient conditions after the high pressure FTIR measurements, and the frequencies of the adsorbed CO species were lower either for the heat treated samples or in the presence of water vapor. It is assumed that the CO absorption bands on atomically smoother surfaces appear at lower frequencies and that water molecules are adsorbed more preferentially on atomically rough surfaces rather than CO species.  相似文献   

16.
Recently, it has been shown that adsorption of gases on solid surfaces often leads to repulsive forces between adsorbate molecules. In this paper, adsorption of molecules on a one-dimensional lattice is considered for repulsive interactions between adsorbate molecules. Exact adsorption isotherms are calculated and analyzed for finite and infinite chains of active sites (i.e., a one-dimensional lattice). Although the mathematical solution for the one-dimensional lattice is known for attractive and repulsive systems, the effects of intermolecular repulsions on adsorption behavior have not been studied in detail previously. Similarly, though the mathematics for the one-dimensional lattice has been solved for any arbitrary lattice length, the effect of finite size on adsorption isotherms for repulsive adsorbate interactions has never been examined. This paper shows that spatial confinement and strong attraction to active sites can cause compression of an adsorbed phase and that repulsive interactions between adsorbed molecules result in steps in the adsorption isotherms. For higher chemical potentials, the density increases until saturating at the lattice capacity. These steps in the adsorption isotherm have not been observed in previous studies of lattice systems. For small lattices, the adsorption behavior was found to be fundamentally different for even and odd values of lattice length. Lattices with an even number of lattice sites can have two steps in the adsorption isotherm, whereas systems with an odd number of sites only have a single step occurring at a coverage slightly greater than half the lattice capacity.  相似文献   

17.
Adsorption of ethanol onto silica surfaces from ethanol-cyclohexane binary liquids was investigated by a combination of colloidal probe atomic force microscopy, adsorption excess isotherm measurement, and FTIR spectroscopy using the attenuated total reflection (ATR) mode. An unusually long-range attraction was found between the silica (glass) surfaces in the presence of ethanol in the concentration range of 0.1-1.4 mol % at room temperature. At 0.1 mol % ethanol, the attraction appeared at a distance of 35 +/- 3 nm and turned into a repulsion below 3.5 +/- 1.5 nm upon compression. Half of the attraction range agreed with the adsorption layer thickness estimated from the adsorption excess amount by assuming that the adsorption layer was composed only of ethanol. This indicated that the observed long-range attraction was caused by the contact of opposed adsorption layers of ethanol on the silica surfaces and that the sharp increase of repulsion at shorter distance was caused by the overlap of structured ethanol clusters adjacent to the surface. ATR-FTIR spectra demonstrated that ethanol adsorbed on the silica (silicon oxide) surfaces formed hydrogen-bonded clusters (polymers). Practically no ethanol clusters were formed on the hydrogen-terminated silicon surface. These results indicated that the cluster formation involved hydrogen-bonding interactions between surface silanol groups and ethanol hydroxyl groups in addition to those between ethanol hydroxyl groups. At higher temperatures (30-50 degrees C), the range and the strength of attraction decreased owing to the decrease in the hydrogen-bonded clusters monitored by FTIR spectroscopy, reflecting the nature of hydrogen bonding. The range and the strength of the attraction also changed when the ethanol concentration increased: The long-range attraction started to decrease at 0.6 mol % ethanol at room temperature and disappeared at 1.4 mol % while the adsorption excess amount remained almost constant as did the FTIR peak intensity of the hydrogen-bonded OH group of adsorbed ethanol. In the bulk solution, ethanol clusters appeared at 0.5 mol % ethanol; thus, this change in the attraction could be accounted for in terms of the exchange of ethanol molecules between the surface clusters and bulk clusters. The novel self-assembled structure of alcohol on the surface, found in this study may be called a "surface molecular macrocluster" because the hydrogen-bonded clusters extend to distances of ca. 20 nm longer than the typical sizes of common clusters, 2-4 nm, of alcohol (e.g., ethanol).  相似文献   

18.
Adsorption of sodium dodecylbenzene sulfonate (NaDBS) on the surfaces of dispersed oil globules during homogenization of paraffin oil in water emulsions has been studied. NaDBS concentration was changed over a wide interval comprising critical micelle concentration. For the emulsions homogenized for different time intervals the total quantity and the percentage of NaDBS adsorbed, the amount and number of NaDBS molecules adsorbed per unit inter-facial area, as well as the specific surface area of dispersed phase and the area per emulsifier molecule have been determined.

The amount adsorbed and density of the emulsifier layer, I.e., the area per NaDBS molecule adsorbed on the oil globule surfaces, depend not only on Initial NaDBS concentration but also, on the homogenization time and the homogenization action. This makes a difference between the adsorption behaviour under the conditions of emulsion formation and its subsequent homogenization, and the adsorption behaviour of the emulsifier at a plane quiescent Interface.  相似文献   

19.
Four different organosilanes (octyltrihydroxysilane, butyltrihydroxysilane, aminopropyltrihydroxysilane, and thiolpropyltrihydroxysilane) adsorbed at a reconstructed Zn-terminated polar ZnO (0001) surface are studied via constant temperature (298 K) molecular dynamics simulations. Both single adsorbed silane molecules as well as adsorbed silane layers are modeled, and the energy, distance, orientation, and alignment of these adsorbates are analyzed. The adsorbed silane molecules exhibit behavior depending on the chemical nature of their tail (nonpolar or polar) as well as on the silane concentration at the solid surface (single adsorption or silane layer). In contrast to the O-terminated ZnO surface studied previously, now adsorption can only occur at the vacancies of this reconstructed crystal surface, thus leading to an arched structure of the liquid phase near the crystal surface. Nevertheless, both nonpolar and polar single adsorbed silanes show a similar orientation and alignment at the surface (orthogonal in the former, parallel in the latter case) as for the O-terminated ZnO surface, although the interaction energy with the surface is considerably increased for nonpolar silanes while it is nearly unaffected for the polar ones. For adsorbed silanes within silane layers, the difference to single adsorbed silanes depends on the polarity of the tail: nonpolar silanes again show an orthogonal alignment, while polar silanes exhibit two different orientations at the solid surface-a head and a tail down configuration. This leads to two completely different but nevertheless stable orientations of these silanes at the Zn-terminated ZnO surface.  相似文献   

20.
Isotherms for the adsorption of β-naphthol from a buffered aqueous solution of 0.5 M K2SO4 onto graphite were detemrined over a range of potential of 1.27 V. The adsorbent was a packed bed of ?100 + 120 mesh graphite powder. Sufficient surface area was available to calculate accurately the amount adsorbed by measuring spectrophotometrically the change in adsorbate concentration in the bulk solution.At all potentials, a Langmuir adsorption isotherm, modified for the displacement of solvent molecules, was followed up to 60–65% of monolayer coverage. The ratio of projected areas of β-naphthol and water molecules was consistent with the experimentally derived number of solvent molecules displaced, six. The largest amount of adsorption observed, 2.5×10?10 mol cm?2, agreed with the calculated monolayer coverage of β-naphthol molecules lying in flat orientation on the graphite surface. Adsorption increased at more positive potentials. Over the range of potential investigated, the adsorbability constant increased sixfold. Desorption was only partially reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号