首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycans were cleaved from gangliosides and separated by high-performance liquid chromatography (HPLC). The columns were packed with bonded stationary phases made of microparticulate, macroporous silica with serotonin, phenylpropanolamine or tryptamine as the biogenic amine ligate. The ganglioside oligosaccharides were eluted in the order of increasing number of sialic acid residues in the molecule and their retention decreased with the ionic strength of the mobile phase. Best selectivity was obtained in the pH range from 3.0 to 4.0. The two major sialic acids, N-acetylneuraminic and N-glycolylneuraminic acids, were separated by lectin affinity chromatography using an HPLC column packed with silica-bound wheat germ agglutinin and 10 mM phosphate buffer, pH 4.0, as the eluent. Throughout this study, isocratic elution was used and the column effluent was monitored at 195 nm.  相似文献   

2.
An improved method for the preparation of perbenzoylated ganglioside-derived sialic acids is described. After mild acid hydrolysis, isolation of sialic acids can be achieved by Folch partition (Method A) or by anion exchange chromatography (Method B). Perbenzoylated sialic acids were freed from benzoylation reagents by a second Folch partition. Total recoveries of both methods were found to be greater than or equal to 90%, calculated from metabolically labelled gangliosides. Derivatized N-acetylneuraminic and N-glycolylneuraminic acids were separated and quantified by isocratic high performance liquid chromatography using a RP18 column as the stationary phase and methanol:water (8:2) as the mobile phase. Both sialic acids were completely separated and eluted as single peaks within 15 min, monitored by UV detection. As little as 20 ng of neuraminic acid could be detected, the detector being linear up to 5 micrograms tested.  相似文献   

3.
Y B Liu  K F Chan 《Electrophoresis》1991,12(6):402-408
Gangliosides are sialic acid-containing glycosphingolipids. In aqueous media, these glycolipids have been shown to exist as stable micelles. Ganglioside micelles could be analyzed by high-performance zonal capillary electrophoresis in uncoated fused-silica capillaries within 10 min. The mass sensitivity determined by monitoring the absorption of ultraviolet light at 195 nm was in the order of 10(-11) mol. Increasing the pH of the running buffer from 3.0 to 7.4 or the voltage from 10 to 30 kV increased the relative mobilities of gangliosides. By contrast, increasing the ionic strength of the buffer decreased the migration and broadened the elution peak widths of gangliosides. Ganglioside* micelles including GM1, GD1b, and GT1b were resolved into separate peaks by capillary electrophoresis at physiological pH shortly after mixing. Upon prolonged incubation, the ganglioside peaks merged to form a single species. The fusion process was temperature-dependent. At 50 degrees C, formation of mixed micelles between polysialogangliosides GD1b and GT1b was complete within 30 min. In contrast, no fusion of the ganglioside peaks was observed at 0 degrees C even after 75 h. Formation of mixed micelles between GD1b and other polysialogangliosides including GD1a, GT1b, and GQ1b at 37 degrees C required 1.5, 3.0, and 2.0 h, respectively. Formation of mixed micelles between monosialoganglioside GM1 and polysialogangliosides were 6- to 36-fold slower. No fusion was observed between monosialogangliosides GM1 and GM2 after 2 days of incubation. These findings indicate that polysialogangliosides may have higher propensities than monosialoganglioside to form mixed micelles.  相似文献   

4.
Liquid chromatography/electrospray ionization mass spectrometry (LC/ESI‐MS) is suitable for analysis of glycosphingolipids such as fragile gangliosides avoiding the use of the sialic acid elimination. However, it was not possible to distinguish the structural isomers such as GD1a and GD1b with reversed‐phase LC/ESI‐MS by hydrophobic interaction. Here we report an effective method for targeted analysis of theoretically expanded ganglioside molecular species including structural isomers by hydrophilic interaction liquid chromatography (HILIC)/ESI‐MS with multiple reaction monitoring (MRM). As a result of MRM analysis of glycosphingolipid mixtures from porcine brain, each of the lipid classes was detected within 25 min in the following order: sulfatides > GM3 > GM2 > GM1 > GD3 > GD1a > GD2 > GD1b > GT1a > GT1b > GQ1b. For the advanced application, localization analysis of postnatal day 15 (P15) mouse cerebellum layered structures was carried out by combination of MRM and laser microdissection (LMD). As a result, GM3, GD1a, GT1b and GQ1b were abundantly detected in the molecular and granular layers, whereas GM1 was widely presented in each layered structure. These gangliosides were mainly composed of d18:1‐18:0 and d18:1‐20:0, but GM3 was d18:1‐16:0 and d18:1‐20:0. Meanwhile, sulfatide molecular species were mostly localized in the myelinated fibers and scarcely found in the molecular layer. These results suggested that our method is suitable to detect a variety of ganglioside classes and sulfatides with high sensitivity at the molecular species level and effective for localization analysis of these glycosphingolipids from mouse brain sections. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A method of ultra-performance liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry (UPLC-ESI-MS/MS) has been established for simultaneous determination of major disialoganglioside 3 (GD3) and monosialoganglioside 3 (GM3) in infant formulas and whey protein concentrates. Gangliosides were extracted by using the technique of Svennerholm and Fredman and then cleaned up with OASIS HLB solid-phase extraction (SPE) cartridges. The various molecular species of gangliosides were separated on an Acquity UPLC BEH C8 column and analyzed under the negative ion mode. GD3 and GM3 were rapidly quantified using internal standard (IS) method. The developed method was further validated by determining the linearity, average recovery, sensitivity (limit of quantification), and precision. The results presented high correlation coefficients (R(2) > 0.993) of the selected 16 gangliosides molecular species and provided the respective linear ranges. The limit of quantification was 0.325-0.734 mg/100 g for eight molecular species of GD3 and 0.008-0.312 mg/100 g for eight molecular species of GM3, respectively. The reasonable average recoveries (81-95%) and precision (relative standard deviation [RSD] ≤15%) were also demonstrated in three different spiked levels. This new method would be very useful in the quantitative determination of gangliosides in infant formulas and whey protein concentrates.  相似文献   

6.
Micellar inhibition effect of gangliosides on a degradation of drug was investigated, where ganglioside G(M1) (GM1), G(D1a) (GD1a) and G(T1b) (GTlb) whose sialic acid residue is one, two and three, respectively, were used. The base-catalyzed isomerization of prostaglandin A(2) (PGA(2)) to prostaglandin B(2) (PGB(2)) was chosen as a model experiment. The rate for the isomerization of PGA(2) was determined by measuring the concentration of PGA(2) (and PGB(2)) with a high-performance liquid chromatography. Gangliosides micelles inhibited the isomerization of PGA(2). The inhibition effect of GT1b micelles was larger than that of GD1a micelles. This result would be due to the larger absolute value of surface potential of GT1b micelles, which brings about a larger electrostatic repulsion between micellar surface and OH(-). The terminal sialic acid residue of ganglioside was effective to inhibit the isomerization of PGA(2). GM1 micelles without terminal sialic acid residue but with large aggregation number exhibited a superior steric shielding effect rather than an electrostatically repulsive effect. The inhibition effect of GM1 micelles was enhanced by the mixed micellization with the other ganglioside with a terminal sialic acid residue. GM1-GD1a or GM1-GT1b mixed micelles remarkably inhibited the isomerization of PGA(2). The physiological activity of PGs in the biological membranes containing gangliosides was also discussed.  相似文献   

7.
Polysialoglycoconjugates, such as polysialylated ganglio-series gangliosides and N-CAM (neural cell adhesion molecule), are of interest because of their important physiological functions in association with neural cell development, differentiation, neuron network formation, and so on.2-4 Chemical synthesis of these glycoconjugates provides an effective method to elucidate their biological significance in nature at the molecular level, providing not only genuine original glycoconjugates but also their derivatives and analogs designed for biological investigation. We have established5 an efficient method to construct dimeric and trimeric sialoglycosides by using the lactonated sialic acid derivatives as building blocks, and succeeded in the systematic synthesis of various polysialogangliosides such as GD3, GQ1b, GQlbα and, very recently, GT3.6 In this paper, as a part of our continuous synthetic approach directed toward the polysialoglycoconjugates, we report the first synthesis of α-linked tetrameric sialoglycosides coupled with a galactose and lactose residue.  相似文献   

8.
Hepatic ganglioside composition was investigated in normal and cholestatic Wistar rats. Cholestasis was induced by 17alpha-ethinylestradiol (EE; 5 mg/kg body weight s.c. for 18 days). As compared with controls, the EE administration resulted in severe cholestasis, as indicated by biochemical as well as morphological signs. Gangliosides isolated from the liver tissue were separated by TLC, with resorcinol-HCl detection and densitometric evaluation. As compared with controls, the total hepatic lipid sialic acid content in cholestatic rats was increased almost 2-fold (44.3 +/- 15.2 vs 79.1 +/- 9.0 nmol/g wet weight of liver tissue, p < 0.01). This increase was primarily due to the increase of ganglioside GD1a (3.6 +/- 1.0 vs 11.8 +/- 3.0 nmol/g wet weight of liver tissue, p = 0.001), as well as to the enormous up-regulation of b-series gangliosides GD3 (0.08 +/- 0.03 vs 2.0 +/- 1.2 nmol/g wet weight of liver tissue, p = 0.002), GD1b (0.1 +/- 0.06 vs 5.4 +/- 1.6 nmol/g wet weight of liver tissue, p = 0.002) and GT1b (0.06 +/- 0.03 vs 6.4 +/- 2.6 nmol/g wet weight of liver tissue, p = 0.002). As the majority of gangliosides are concentrated in cell membranes, our findings suggest that dramatic increase of b-series gangliosides might contribute to the protection of hepatocytes against the deleterious effects of cholestasis.  相似文献   

9.
The heterophile antigen (Paul-Bunnell antigen, PBA) of infectious mononucleosis was isolated by extraction of an aqueous suspension of bovine erythrocyte stromata with chloroform-methanol (2:1). The upper aqueous layer contained gangliosides, PBA, and a high-molecular-weight glycoprotein. PBA and gangliosides were separated from the high-molecular-weight glycoprotein by extraction of lyophilized upper layer with chloroform-methanol solvents. Separation of PBA from gangliosides was carried out by chromatography on DEAE-cellulose with chloroform-methanol solvents. PBA appeared to be a minor glycoprotein component of the erythrocyte membrane and had both hydrophobic and hydrophilic properties. It was soluble in either organic or aqueous solvents. On SDS-polyacrylamide gel electrophoresis, it migrated as a single component that stained for protein with Coomassie blue, for carbohydrate with periodic acid-Schiff reagent, and for lipid with oil red 0; it had an apparent molecular weight of 26,000. It was composed of 62% protein with major amino acids; glutamic acid, proline, glycine, isoleucine, leucine, and threonine (158, 116, 98, 90, 85, and 82 residues per 1,000 residues, respectively). Carbohydrate content was 9.2% with major sugar constituents: sialic acid, galactosamine, and galactose. Serologic activity of PBA was destroyed by pronase but not by trypsin.  相似文献   

10.
A general approach for the detection and structural elucidation of brain ganglioside species GM1, GD1 and GT1 by nano-electrospray ionization quadrupole time-of-flight (nanoESI-QTOF) mass spectrometry (MS), using combined data from MS and MS/MS analysis of isolated native ganglioside fractions in negative ion mode and their permethylated counterparts in the positive ion mode is presented. This approach was designed to detect and sequence gangliosides present in preparatively isolated ganglioside fractions from pathological brain samples available in only very limited amounts. In these fractions mixtures of homologue and isobaric structures are present, depending on the ceramide composition and the position of the sialic acid attachment site. The interpretation of data for the entire sequence, derived from A, B, C and Y ions by nanoESI-QTOFMS/MS in the negative ion mode of native fractions, can be compromised by ions arising from double and triple internal cleavages. To distinguish between isobaric carbohydrate structures in gangliosides, such as monosialogangliosides GM1a and GM1b, disialogangliosides GD1a, GD1b and GD1c or trisialogangliosides GT1b, GT1c and GT1d, the samples were analysed after permethylation in the positive ion nanoESI-QTOFMS/MS mode, providing set of data, which allows a clear distinction for assignment of outer and inner fragment ions according to their m/z values. The fragmentation patterns from native gangliosides obtained by low-energy collision induced dissociation (CID) by nanoESI-QTOF show common behaviour and follow inherent rules. The combined set of data from the negative and positive ion mode low-energy CID can serve for the detection of structural isomers in mixtures, and to trace new, not previously detected, components.  相似文献   

11.
A sensitive micromethod involving extraction, purification and thin-layer chromatography (TLC)-enzyme immunostaining was developed for the quantation of gangliosides and sulphatide, as markers for neuronal disorders and myelin disturbances, in individual samples of less than 5 ml of cerebrospinal fluid. The gangliosides of the gangliotetraose series were individually determined with cholera toxin subunit B by TLC-enzyme-linked immunosorbent assay (ELISA) after chromatography and subsequent sialidase hydrolysis to II3NeuAc-GgOse4Cer (GM1). Other gangliosides and sulphatide were determined with specific monoclonal antibodies by TLC-ELISA. The total ganglioside content varied between 100 and 230 nmol/l in ten normal cerebrospinal fluid samples from adults. The major gangliosides were of the gangliotetraose series, represented by GM1, IV3NeuAc,II3NeuAc-GgOse4Cer, (GD1a), II3(NeuAc)2-GgOse4Cer (GD1b) and IV3NeuAc,II3 (NeuAc)2-GgOse4Cer (GT1b) of which the b-series gangliosides dominated, i.e., GD1b and GT1b.  相似文献   

12.
Enantiomeric pairs of sialic acid, D- and L-NeuAc (N-acetylneuraminic acid), were converted to D- and L-arabinose, respectively, by chemical degradation. Using this method, the absolute configuration of the sialic acid residues, NeuAc and NeuGc (N-glycolylneuraminic acid), in the gangliosides from the sea cucumber Cucumaria echinata was determined to be the D-form. Although naturally occurring sialic acids have been believed to be the D-form on the basis of biosynthetic evidence, this is the first report of the determination of the absolute configuration of the sialic acid residues in gangliosides using chemical methods.  相似文献   

13.
A new assay method for sialidase (EC 3.2.1.18) activity using ion-exchange chromatography and acidic ninhydrin reaction has been developed. Fetuin, 4-methylumbelliferyl-N-acetylneuraminic acid (MUB-NANA), gangliosides and N-acetylneuramin-lactose were examined as substrates. Free sialic acid liberated from these substrates by sialidase reaction was isolated with a Dowex 1-X8 column (trifluoroacetate form, 1.5 cm x 0.5 cm I.D.) and determined by acidic ninhydrin reaction. Among the substrates tested, MUB-NANA was the best in the present method, N-Acetylneuramin-lactose could not be used as the substrate, because it was not separated from liberated sialic acid under the conditions used. The recovery of N-acetylneuraminic acid was above 88%, and the sensitivity of the method was 20 nmol in 300 microliters of the reaction mixture. The method was applied to the sialidase assay during its purification from rat skeletal muscle, and a Michaelis constant of 1.15 mM was obtained with MUB-NANA as the substrate. The method using the acidic ninhydrin reaction was simple and exhibited good reproducibility.  相似文献   

14.
The combination of ion mobility with matrix-assisted laser desorption/ionization allows for the rapid separation and analysis of biomolecules in complex mixtures (such as tissue sections and cellular extracts), as isobaric lipid, peptide, and oligonucleotide molecular ions are pre-separated in the mobility cell before mass analysis. In this study, MALDI-IM MS is used to analyze gangliosides, a class of complex glycosphingolipids that has different degrees of sialylation. Both GD1a and GD1b, structural isomers, were studied to see the effects on gas-phase structure depending upon the localization of the sialic acids. A total ganglioside extract from mouse brain was also analyzed to measure the effectiveness of ion mobility to separate out the different ganglioside species in a complex mixture.  相似文献   

15.
A liquid chromatographic/tandem mass spectrometric method using pneumatically assisted electrospray ionisation (LC/ESI-MS/MS) was developed for the determination of gangliosides GD3 and GM3 in milk and infant formulae. The gangliosides were extracted in a chloroform/methanol/water environment and cleaned up by solid-phase extraction (SPE) on an end-capped C8 sorbent. The gangliosides were detected in negative ion mode after separation on a reversed-phase (RP) C5 analytical column. From the different ganglioside molecular species, product ions at m/z 290 corresponding to an N-acetylneuraminic acid fragment were produced in the collision cell and used in selected reaction monitoring. A standard addition technique was applied for quantification. The relative repeatability standard deviations were less than 5% for GD3 (level 10 mg/L) and 14% for GM3 (level 0.1-0.2 mg/L).  相似文献   

16.
Serum and tissue specimens from healthy Wistar rats and from rats with Walker 256 carcinoma were analysed for N-acetyl and N-glycolylneuraminic acid by high performance liquid chromatography (HPLC) as per-O-benzoylated derivatives. Both neuraminic acids were identified, while N-acetylneuraminic acid was the predominant sialic acid. Samples from rats with generalized metastasis showed a significant increase (45-80%) of total sialic acids. This phenomenon in serum is caused by the overproduction of sialic acids, as a result of synthesis of both types of neuraminic acids to a similar molar ratio. The increase of sialic acids in rat bones with metastatic cancer is mainly because of increased N-acetylneuraminic acid synthesis. These results suggest that the molecular mechanisms responsible for cancer metastasis in different tissues may be closely associated with increased synthesis of dominating neuraminic acid.  相似文献   

17.
Stem cells are used for the investigation of developmental processes at both cellular and organism levels and offer tremendous potentials for clinical applications as an unlimited source for transplantation. Gangliosides, sialic acid-conjugated glycosphingolipids, play important regulatory roles in cell proliferation and differentiation. However, their expression patterns in stem cells and during neuronal differentiation are not known. Here, we investigated expression of gangliosides during the growth of mouse embryonic stem cells (mESCs), mesenchymal stem cells (MSCs) and differentiated neuronal cells by using high-performance thin-layer chromatography (HPTLC). Monosialoganglioside 1 (GM1) was expressed in mESCs and MSCs, while GM3 and GD3 were expressed in embryonic bodies. In the 9-day old differentiated neuronal cells from mESCs cells and MSCs, GM1 and GT1b were expressed. Results from immunostaining were consistent with those observed by HPTLC assay. These suggest that gangliosides are specifically expressed according to differentiation of mESCs and MSCs into neuronal cells and expressional difference of gangliosides may be a useful marker to identify differentiation of mESCs and MSCs into neuronal cells.  相似文献   

18.
Abstract

As more and more biological functions1-10 of gangliosides are being revealed, their facile, stereocontrolled synthesis is strongly required. We have developed11-l4 an α-stereoselective glycosylation of sialic acids, α-sialyl-(2→8)-sialic acid and α-sialyl-(2→8)-α-sialyl-(2→8)-sialic acid, by using their 2-thioglycosides as the glycosyl donor and suitably protected acceptors, and dimethyl(methy1thio)sulfonium triflate (DMTST) or N-iodosuccinimide (NIS)-trifluoromethanesufonic acid (or TMS triflate) as the glycosyl promoter in acetonitrile. In this way, we have synthesized a variety of gangliosides15 and their analogs.16 Previously,13 we synthesized Ganglioside GD3 containing α-sialyl-(2-8)-sialic acid residue in the molecule, in connection with a novel approach for systematic synthesis of polysialo-glycoconjugates. As a part of our continuing studies on the synthesis and elucidation of the functions of gangliosides, we describe here a facile, stereocontrolled, total synthesis of ganglioside GD2. Ganglioside GD2, which was first isolated from human brain by R. Kuhn et al.,17 is well known as a human melanoma associated antigen.18  相似文献   

19.
高效液相色谱法分析大豆中磷脂酰胆碱的分子种   总被引:6,自引:0,他引:6  
用高效液相色谱法(HPLC)在正相半制备硅胶柱上将大豆磷脂酰胆碱与其它组分分离,从柱后收集磷脂酰胆碱(PC),然后在反相C18柱上分析其分子种组成,蒸发光散射检测器检测。在25min内将大豆磷脂酰胆碱分离成11个分子种组分,使用易挥发溶剂,可获得各种分子种的纯物质,供进一步分析。分子种根据HPLC峰的脂肪酸组成分析而确定。  相似文献   

20.
A strategy combining high-performance thin layer chromatography (HPTLC), laser densitometry, and fully automated chip-based nanoelectrospray (nanoESIchip) performed on a NanoMate robot coupled to QTOF-MS was developed, optimized, and for the first time applied for mapping and structural identification of gangliosides (GGs) extracted and purified from a human angioblastic meningioma specimen. While HPTLC pattern indicated only seven fractions migrating as GM3, GM2, GM1, GD3, GD1a (nLD1, LD1), GD1b, GT1b, and possibly GD2, due to the high sensitivity, mass accuracy, and ability to ionize minor species in complex mixtures, nanoESIchip-QTOF MS was able to discover significantly more GG species than ever reported in meningioma. Thirty-four distinct glycosphingolipid components of which five asialo, one GM4, nine GM3, two GM2, two GD3, nine GM1, and six GD1 differing in their ceramide compositions were identified. All structures presented long-chain bases with 18 carbon atoms, while the length of the fatty acid was found to vary from C11 to C25. MS screening results indicated also that the diversity of the expressed GM1 structures is higher than expected in view of the low proportions evidenced by densitometric quantification. Simultaneous fragmentation of meningioma-associated GM1 (d18:1/24:1) and GM1 (d18:1/24:0) by MS/MS using CID confirmed the postulated structures of the ceramide moieties and provided data on the glycan core, which document that for each of the GM1 (d18:1/24:1) and GM1 (d18:1/24:0) forms both GM1a and GM1b isomers are expressed in the investigated meningioma tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号