首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of second-neighbor spin coupling interactions and a magnetic field are investigated on the free energies of a finite-size 1-D Ising model. For both ferromagnetic of nearest neighbor (NN) and next-nearest neighbor (NNN) spin coupling interactions, the finite-size free energy first increases and then approaches a constant value for any size of the spin chain. In contrast, when NNN and NN spin coupling interactions are antiferromagnetic and ferromagnetic, respectively, the finite-size free energy gradually decreases by increasing the competition factor and eventually vanishes for large values of it. When a magnetic field is applied, the finite-size free energy decreases with respect to the case of zero magnetic fields for both ferromagnetic and antiferromagnetic spin coupling interactions. Deviation of free energy per size for finite-size systems relative to the infinite system increases when the spin coupling interactions as well as the f parameter (the ratio of the magnetic field to NN spin coupling interaction) increase.  相似文献   

2.
The impurities of exchange couplings, external magnetic fields and Dzyaloshinskii-Moriya (DM) interaction considered as Gaussian distribution, and the entanglement in one-dimensional random XY spin systems is investigated by the method of solving the different spin-spin correlation functions and the average magnetization per spin. The entanglement dynamics at central locations of ferromagnetic and antiferromagnetic chains have been studied by varying the three impurities and the strength of DM interaction. (i) For the ferromagnetic spin chain, the weak DM interaction can improve the amount of entanglement to a large value, and the impurities have the opposite effect on the entanglement below and above critical DM interaction. (ii) For the antiferromagnetic spin chain, DM interaction can enhance the entanglement to a steady value. Our results imply that DM interaction strength, the impurity and exchange couplings (or magnetic field) play competing roles in enhancing quantum entanglement.  相似文献   

3.
王彦辉  夏云杰 《物理学报》2009,58(11):7479-7485
研究了一维三量子比特海森伯模型中的对纠缠的提高和控制问题,在该系统中引入了Dzyaloshinskii-Moriya(DM)相互作用,通过求解共生来计算两量子比特之间的热纠缠,结果表明:对于XXX模型,引入DM相互作用D,可以诱导铁磁和反铁磁自旋链产生热纠缠,尽管它们产生热纠缠所需的D值大小不同.对于XXZ模型,引入DM相互作用后,可以使原本不存在热纠缠的反铁磁自旋链产生纠缠,而且对于铁磁和反铁磁这两种XXZ自旋链,DM相互作用和各向异 关键词: 纠缠 XXX模型')" href="#">XXX模型 XXZ模型')" href="#">XXZ模型 Dzyaloshinskii-Moriya相互作用  相似文献   

4.
In this paper, the transfer matrix renormalization group method is used to study the thermodynamic and the magnetic properties of a novel one-dimensional fumarate-bridged Cu(II) chain by a two kinds of models. One simplified model is that of the dominant ferromagnetic and antiferromagnetic alternating chain, which is only in rough agreement with the experimental results. Further research shows a possible mechanism of alternating strong ferromagnetic and weak antiferromagnetic interaction among one chain. Considering the weak antiferromagnetic interaction existing in the actual materials, we propose a two-leg spin ladder model with intrachain ferromagnetic and weak interchain antiferromagnetic interaction. The obtained theoretical results are in quite good agreement with experimental curves, which indicates the two-leg spin ladder model is appropriate to describe the fumarate-bridged chain-like polymer of Cu(II).  相似文献   

5.
The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise thermal entanglement, or quantum phase transition is not present in antiferromagnetic spin chain. For the ferromagnetic case, quantum phase transition takes place at △ = 1 for anisotropic interaction and at some values of three-spin coupling strength, and pairwise thermal entanglement increases when the value of J/T increases and with anisotropic interaction and three-spin interaction decrease. In addition, we find that increasing the anisotropic interaction and the three-spin interaction will decrease critical temperature.  相似文献   

6.
The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise thermal entanglement, or quantum phase transition is not present in antiferromagnetic spin chain. For the ferromagnetic case, quantum phase transition takes place at A = 1 for anisotropic interaction and at some values of three-spin coupling strength, and pairwise thermal entanglement increases when the value of J/T increases and with anisotropic interaction and three-spin interaction decrease. In addition, we find that increasing the anisotropic interaction and the three-spin interaction will decrease critical temperature.  相似文献   

7.
Pairwise thermal entanglement in the three-qubit XXX Heisenberg model with next nearest neighbor interaction and a nonuniform magnetic field has been studied. It's found that the next nearest neighbor interaction has a great effect on the entanglement between the next nearest neighbor sites, but has slight effect on the nearest neighbor entanglement (NNE). Applying a magnetic field at the middle site enhances the next nearest neighbor entanglement (NNNE) sharply when there is a small field at the side sites and the next nearest neighbor coupling constant is positive. A staggered magnetic field helps to maintain nearest neighbor entanglement obviously.  相似文献   

8.
李鹏飞  陈中华 《中国物理 B》2010,19(2):27503-027503
This paper numerically investigates the magnetoelastic instability in the S = 1/2 {XXZ} rings containing finite spins N with antiferromagnetic nearest-neighbour ({NN}) and next-nearest neighbour ({NNN}) coupling. It finds that, as the {NN} anisotropy Δ1 equals the {NNN} anisotropy \varDelta2, there exists a critical {NNN} coupling strength J2c(≈0.5), at which the systems always locate in dimerized phase for arbitrary large spring constant. As Δ1 \ne Δ2, the values of J2^{\rm c} are dependent on N and the difference of (Δ1-\varDelta2).  相似文献   

9.
We numerically investigate the thermal entanglements of spins (1/2, 1) and spins (1/2, 1/2) in the three-mixed (1/2, 1, 1/2) anisotropic Heisenberg XXZ spin system on a simple triangular cell under an inhomogeneous magnetic field. We show that the external magnetic field induces strong plateau formation in the pairwise thermal entanglement for fixed parame-ters of the Hamiltonian in the cases of ferromagnetic and antiferromagnetic interactions. We also .observe an unexpected critical point at finite temperature in the thermal entanglement of spins (1/2, 1) for the antiferromagnetic case, while the entanglement of spins (1/2, 1) in the ferromagnetic case and the entanglement of spins (1/2, 1/2) in both ferromagnetic and antiferromagnetic cases almost decay exponentially to zero with increasing temperature. The critical point in the en-tanglement of spins (1/2, 1) in the antiferromagnetic case may be a signature of the quantum phase transition at finite temperature.  相似文献   

10.
The next-nearest neighbor correlation function for isotropic triangular Ising system has been evaluated. This function is used to determine the shifts in the critical temperatures of ferromagnetic and antiferromagnetic triangular lattice after introduction of a small next-nearest neighbor interaction in zero field.  相似文献   

11.
In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-chain next-nearest-neighbor (NNN) super-exchange interaction is investigated in detail and the order parameters are calculated to detect the emergence of the dimerized phases. We find that the intra-chain NNN interaction plays a key role in inducing dimerized phases.  相似文献   

12.
We show how nanostructuring of a metallic gate of a field-effect transistor (FET) converts the electron channel of an FET to an artificial Haldane chain with a gap in the energy spectrum. A specially designed gate structure creates a chain of triple quantum dot molecules. The electrons localized in the molecules realize a spin-half Heisenberg chain with spin–spin interactions alternating between ferromagnetic and antiferromagnetic. The quantum state of an FET is a semiconductor implementation of an integer spin-one antiferromagnetic Heisenberg chain with a unique correlated ground state and a finite energy gap, originally conjectured by Haldane.  相似文献   

13.
《Physics letters. A》2014,378(30-31):2290-2294
The classical Kitaev–Heisenberg model on the triangular lattice is investigated by simulation in its full parameter space together with the next-nearest neighboring Heisenberg interaction or the single-ion anisotropy. The variation of the system is demonstrated directly by the joint density of states (DOS) depending on energy and magnetization obtained from Wang–Landau algorithm. The Metropolis Monte Carlo simulation and the zero-temperature Glauber dynamics are performed to show the internal energy, the correlation functions and spin configurations at zero temperature. It is revealed that two types of DOS (U and inverse U) divide the whole parameter range into two main parts with antiferromagnetic and ferromagnetic features respectively. In the parameter range of U type DOS, the mixed frustration from the triangular geometry and the Kitaev interaction produces rich phases, which are influenced in different ways by the next-nearest neighboring Heisenberg interaction and the single-ion anisotropy.  相似文献   

14.
In this paper, we investigate the thermal entanglement of two-spin subsystems in an ensemble of coupled spin-half and spin-one triangular cells, (1/2, 1/2, 1/2), (1/2, 1, 1/2), (1, 1/2, 1) and (1, 1, 1) with the XXZ anisotropic Heisenberg model subjected to an external homogeneous magnetic field. We adopt the generalized concurrence as the measure of entanglement which is a good indicator of the thermal entanglement and the critical points in the mixed higher dimensional spin systems. We observe that in the near vicinity of the absolute zero, the concurrence measure is symmetric with respect to zero magnetic field and changes abruptly from a non-null to null value for a critical magnetic field that can be signature of a quantum phase transition at finite temperature. The analysis of concurrence versus temperature shows that there exists a critical temperature, that depends on the type of the interaction, i.e. ferromagnetic or antiferromagnetic, the anisotropy parameter and the strength of the magnetic field. Results show that the pairwise thermal entanglement depends on the third spin which affects the maximum value of the concurrence at absolute zero and at quantum critical points.  相似文献   

15.
The effects of alternating interaction on the bipartite entanglement are considered in an antiferromagnetic Heisenberg opened chain. Entropy is used to evaluate bipartite entanglement in the system. There are large oscillations between even and odd L-values entropy. The even (odd)-values entropy increases when the length of the subsystem increases. The method of density matrix renormalization-group is applied to obtain logarithmic behavior of entropy.  相似文献   

16.
Bipartite entanglement, entanglement spectrum, and Schmidt gap in S=1 bond-alternative antiferromagnetic Heisenberg chain are investigated by the infinite time-evolving block decimation (iTEBD) method. The quantum phase transition (QPT) from the singlet-dimer phase to the Haldane phase can be detected by the singular behavior of bipartite entanglement, the sudden change of the entanglement spectrum, and the completely vanishing of the Schmidt gap. The critical point is determined to be around rc ~- 0.587, and the second-order character of the QPT is verified. Doubly degenerate entanglement spectra of both even and odd bonds are observed in the Haldane phase, by which one can distinguish the Haldane phase from the singlet-dimer phase easily. Nearest-neighbor antiferromagnetic correlations and next-nearest-neighbor ferromagnetic correlations are found in the whole parameter region. At the critical massless point, although exponentially decaying antiferromagnetie correlation is observed, it approaches to a constant value finally. Therefore, long-range correlations exist and the correlation length becomes divergent at the critical point.  相似文献   

17.
The thermal entanglement in the triangular molecular spin ring with Dzyaloshinskii-Moriya interaction is studied.The concurrences of arbitrary two spins of the triangular molecular spin ring for various cases are evaluated.The tendency of the concurrence with Dzyaloshinskii-Moriya interaction and temperature is analysed and discussed.We note that the concurrence arrives at its maximum in the regime with the large Dzyaloshinskii-Moriya interaction and low temperature,and gradually decreases to zero with the increase of temperature.The concurrence has different features for the ferromagnetic and antiferromagnetic cases.For completeness,we also numerically calculate the concurrence of spin rings with N > 3 spins and analyse their behaviours.  相似文献   

18.
A physical picture of electron spin alignments in organic molecule-based ferrimagnets is given from numerical calculations of magnetic specific heat (C) and magnetic susceptibility (χ) as functions of temperature and static magnetic field (B) in terms of an Ising Hamiltonian for an alternating spin chain. The double-peak structure of specific heat appears for different parameter ratios and different magnetic field B, indicating that one peak originates from the ferromagnetic nature and the other from the antiferromagnetic nature. Meanwhile, we study successively the influence of intermolecular and intramolecular interaction on the magnetic susceptibility, showing that the ferromagnetic spin alignment in the alternating molecular chains of biradicals and monoradicals is equivalent to the ferromagnetic alignment of the effective S=1/2 spins. Our results are consistent with those of the Quantum Monte Carlo simulations and the exact diagonalization method and in qualitative agreement with the experimental ones.  相似文献   

19.
利用Concurrence判据,研究了具有三自旋相互作用的XX模型的纠缠特性;分别在铁磁和反铁磁模型中研究了三自旋相互作用J_2和温度T对两自旋纠缠度的影响.结果表明,三自旋相互作用J_2提高系统的两体纠缠度,但是提高程度会因最近邻自旋间发生铁磁、反铁磁相互作用而有所差异;并且J_2影响两自旋系统纠缠消失的临界温度T_C,T_C会随J_2的增大而减小.系统温度T影响两体纠缠度,随着温度的降低,纠缠度会得到提高.此外,分别在系统本征态和基态中研究了两自旋的纠缠度,求出了系统发生量子相变的量子临界点.  相似文献   

20.
The behavior of a two-level induced moment antiferromagnet in an external magnetic field is investigated in the molecular field approximation. A significant reduction in the critical field and in the sublattice magnetizations is shown. However, the total magnetization rises more rapidly with field and can remain at large value in an external field even at T = 0. The magnetic susceptibility also remains finite at T = 0 in contrast to the case of a permanent moment Ising antiferromagnet. The effects of a ferromagnetic next-nearest neighbor interaction are then examined. It is shown that, in contrast to the usual Ising antiferromagnets, the ferromagnetic coupling has to exceed a certain value depending on the crystal field strength and the antiferromagnetic interaction, to allow for a first order phase transition in a field to occur even at zero temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号