首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Using spatially modulated illumination (SMI) light microscopy it is possible to measure the sizes of fluorescent structures that have an extension far below the conventional optical resolution limit (“subresolution size”). Presently, the sizes are determined as the object extension along the optical axis of the SMI microscope. For this, however, “a priori” assumptions on the fluorochrome distribution (“shape”) within the examined fluorescent structure have to be made. Usually it is assumed that the fluorochrome follows a Gauss-distribution or a spherical distribution. In this report we overcome the necessity to make an assumption on the shape of the fluorochrome distribution. We introduce two new experimentally obtained parameters which allow the determination of a shape measure to describe the spatial distribution of the fluorescent dye. This becomes possible by independent measurements with different excitation wavelengths. As an example, we present shape parameter measurements on individual fluorescent microspheres with a nominal geometrical diameter (“size”) of 190 nm. In the case investigated, the experimental shape correlated well with a homogeneous fluorochrome distribution (“spherical shape”) but not with a variety of other “shapes”.  相似文献   

2.
Quantum systems exhibit a smaller number of energetic states than classical systems (A. Einstein, 1907, Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme, Ann. Phys. 22, 180ff). We take up the selection criterion for this in two parts. (1) The selection problem between classical and nonclassical mechanical systems is formulated in terms of possible and impossible configurations (among others, this overcomes the difficulties occurring when discussing the behavior of quantum particles in terms of paths). (2) The (nonclassical) selection of the quantum states is formulated, using recurrence relations and the energy law. The reformulation of “quantization as eigenvalue problem” in terms of “quantization as selection problem” allows one to derive Schrödinger’s stationary equation from classical mechanics through a straightforward and unique procedure; the nonstationary and multibody equations are subsequently acquired within the same frame. In contrast to the (classical) eigenvalue problem, the (nonclassical) selection problem can be formulated and solved without any reference to additional a priori assumptions on the nature of the quantum system, such as the wave-corpuscle dualism or an underlying wave equation or the existence of Planck’s finite action parameter. The existence of such an additional parameter—as the only additional one—is inherent in the procedure. Within our axiomatic-deductive approach, we modify classical mechanics only where it itself indicates an inherent limitation.  相似文献   

3.
The analysis of digital PIV data, either derived from CCD technology or through film and then scanned, typically involves two quantization steps: spatial and intensity quantization. The all-optical systems do not introduce these sources of error. For systems which make use of digital technology however, it is of crucial importance to have reliable error bounds and a sufficiently accurate estimate of particle position, taking into consideration both types of quantization. The accuracy demanded by aerodynamicists from PIV has been a major barrier to its practical application in the past. The more recent approach of using the Gaussian profile of the particle images to yield sub-pixel accurate position estimates has resulted in robust measurements being taken to an accuracy of 1/10th pixel and 1% in velocity for the in-plane velocity, in hostile industrial environments. A major problem for 3D PIV estimation has historically been that the out-of-plane velocity error was of the order of 3–4 times larger than in-plane. The out-of-plane velocity estimate can be derived from the change in the ratio of amplitude to variance—known as the depth factor—of the Gaussian form, as a particle traverses the beam profile. However, such measurements are crucially dependent not only on an accurate position estimate but also on an equally accurate estimate of the amplitude and variance. The accuracy of the Gaussian profile fit using a Nelder–Meade optimisation method as developed until now however, is not capable of providing the required accuracies. Therefore, this paper presents a development of the “locales” approach to position estimation to achieve the desired objective of high accuracy PIV measurements. This approach makes use of the fact that by considering all the possible digital representations of the Gaussian particle profile, regions of indistinguishable position can be derived. These positions are referred to as “locales”. By considering the density, distribution, and shape of these locales, the available precision can be estimated and an accurate (no worse than 0.5% error for a typical PIV image) in-plane velocity, accuracy can be obtained; while at the same time providing estimates of the depth factor with an error of approximately 0.8%. This paper describes the implementation of an efficient algorithm to provide velocity estimates to an accuracy of at least 0.5% in-plane, together with a discussion of the required constraints imposed on the imaging. The method was validated by creating a synthetic PIV image with CCD-type noise. The flow being analysed is that of flow past the near wake of a cylinder at a Reynolds Number of 140,000. This image was then analysed with the new method and the velocity estimates compared to the CFD data for a range of signal-to-noise ratios (SNR). For a realistic SNR of 5, the accuracy of the method is confirmed as being at least 0.5% in-plane. Finally, the algorithm was used to map an experimental transonic flow field of the stator trailing edge region of a full-size annular cascade with an estimated error of 0.5%. The experimental results are found to be in good agreement with a previously reported steady state viscous calculation and PIV mapping.  相似文献   

4.
X-ray diffraction microscopy (XDM) is a new form of X-ray imaging that is being practiced at several third-generation synchrotron-radiation X-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nanometer resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available X-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called “dose fractionation theorem” of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and “Rose-criterion” image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.  相似文献   

5.
This paper describes an experimental investigation of the feasibility of an “intermittent” active control approach for suppressing combustion instabilities in liquid fueled combustors. The developed controller employs a “smart” fuel injector that can modify the spray properties in response to changes in combustor operating conditions. This action weakens or breaks up the coupling between the combustion process and combustor acoustic modes oscillations, thus preventing the excitation of large amplitude instabilities. This approach differs significantly from previously proposed active control methods, both in concept and implementation, as it requires only “intermittent” modification of the combustion process by a single control action as opposed to the continuous action required by most other active control methods. The “smart” fuel injector used in this study consisted of a double-staged, air-assisted atomizer in which counter swirling, primary (inner stage) and secondary (outer stage) air streams were supplied to the injector through separate sets of tangentially oriented orifices. Control of the ratio of air mass flow rates supplied to these two stages, by use of a diverter valve, resulted in significant changes in the spray shape and its axial, tangential, and radial velocity components. This variation in spray properties of the “smart” injector was characterized for different values of the inner to outer air flow rate ratio in cold flow tests with a PDPA system. These results were then correlated with the characteristics of the “intermittently” controlled combustor. Measured quantities included the instability amplitudes, axial dependence of the mean and oscillatory heat release amplitudes, and the characteristics of the recirculation zones, which were all shown to depend on the fuel spray properties. The results of this study demonstrate the feasibility of using “smart” fuel injectors with capabilities for varying the combustion process characteristics to reduce the amplitudes of detrimental combustion instabilities in real engines to acceptable levels.  相似文献   

6.
Over the past 30 years, optics well known to the physicist have been identified in their multitudes in nature. Multilayer reflectors, diffraction gratings, liquid crystals and structures that scatter light—devices explained using “simple” optical theory—have been found in animals with a diversity of designs. For many years the potential to employ these designs commercially has been clear, although only one optical device in animals has been taken through to the manufacture stage—the fly-eye antireflector. Now, with the beginnings of “complex” optical study in biological specimens, and consequent identification of photonic band gaps, animal reflectors are being taken seriously as promising first stages in the design process of optical engineers. However, natural photonic crystals are often highly complex structures at the nano-scale that may lie beyond the limits of current engineering. This in turn justifies the study of cellular engineering—maybe we can also exploit the flawless processes of manufacture employed by animals.  相似文献   

7.
The unique approach for search and unambiguous identification of short-lived (T1/2=103–107 years) superheavy nuclei in cosmic-ray products of the recent nucleosynthesis in our Galaxy are discussed.It is based on: (a) the ability of non-conducting crystals to register and to store for many million years the tracks due to fast nuclei with atomic number Z20 (“fossil” tracks);(b) calibrations of the said crystals with accelerated heavy ions (20Z92) and on revealing the volume etchable track length (VETL) of the fast nuclei coming to rest inside crystals—both of fossil and “fresh” tracks—to determine the charge distribution of cosmic-ray nuclei tracks and(c) the so-called “four-zone” model of tracks in crystals (and also glasses) which provides not only the VETL track length dependence for 20Z92 nuclei but also demonstrates the regular annealing behavior of VETL of 20Z92 nuclei in a broad temperature interval.This approach was first applied in the early 1980s to investigate the “fossil” tracks due to 22Z92 cosmic-ray nuclei in olivine crystals from meteorites-pallasite Marjalahti and Eagle Station.The discovery of Th–U cosmic-ray nuclei tracks in 1980 was unambiguously confirmed by calibrations of the same crystals with 238U, 197Au and 208Pb accelerated ions in the late 1980s. More than 1600 tracks due to cosmic-ray actinide nuclei were measured during the last two decades of the 20th century.Also, 11 anomalously long tracks (track length exceeds by a factor (1.6±0.1) the track length due to Th–U nuclei were measured. The detailed analysis shows that at least 5 of these tracks could not be attributed to the Th–U nuclei. It means that now we have a preliminary proof on the existence Z110 nuclei in cosmic-rays. The abundance is Z110/Th–U=(1–3)×10−3 in Z110 freshly formed cosmic-rays (time interval 103–107 years).The method proposed can provide the necessary and sufficient conditions for the discovery of Z110 nuclei in nature.  相似文献   

8.
An almost new method has been confirmed for experimentalists to have a first insight into the solid under study, by investigating the Cole–Cole diagrams of both the electric modulus M* and the permittivity ε* at different temperatures. All points of M* function at different temperatures of the investigated hexagonal ferrite data have been collected in one semicircular master curve for each composition. This indicates that the studied compositions belong to a category of solids having what we have referred to as an “electric stiffness” as the dominating property, which is the reciprocal to an “electric compliance”—this would be the dominating property if the permittivity ε* points could be collected in a master curve. In the present work, it has been found that the Cole–Cole diagrams of M* have given some detailed information that are not obviously displayed in the conductivity representation.Moreover, a fitting of the investigated experimental data of the hexagonal ferrites—BaZn2-xMgxFe16O27, where (x=0.0,0.4,0.8,1.2,1.6 and 2)—with Dyre's macroscopic model of ac conductivity has been performed.An indirect method of fitting of the investigated data with the percolation path approximation (PPA) final equation of Dyre's macroscopic model has shown quite satisfactory results especially at relatively low frequencies . Whereas for the effective medium approximation (EMA) final equation of Dyre's macroscopic model the fitting has failed in hexagonal ferrites on contrary with a limited success found in a previous work with spinel ferrites. This is attributed to the more complex structure of hexagonal ferrites than that of spinel ferrites which makes the EMA no more suitable.  相似文献   

9.
Data assimilation is an iterative approach to the problem of estimating the state of a dynamical system using both current and past observations of the system together with a model for the system’s time evolution. Rather than solving the problem from scratch each time new observations become available, one uses the model to “forecast” the current state, using a prior state estimate (which incorporates information from past data) as the initial condition, then uses current data to correct the prior forecast to a current state estimate. This Bayesian approach is most effective when the uncertainty in both the observations and in the state estimate, as it evolves over time, are accurately quantified. In this article, we describe a practical method for data assimilation in large, spatiotemporally chaotic systems. The method is a type of “ensemble Kalman filter”, in which the state estimate and its approximate uncertainty are represented at any given time by an ensemble of system states. We discuss both the mathematical basis of this approach and its implementation; our primary emphasis is on ease of use and computational speed rather than improving accuracy over previously published approaches to ensemble Kalman filtering. We include some numerical results demonstrating the efficiency and accuracy of our implementation for assimilating real atmospheric data with the global forecast model used by the US National Weather Service.  相似文献   

10.
The acquisition of bidimensional heteronuclear nuclear magnetic resonance local field spectra under moderately fast magic-angle spinning (MAS) conditions is discussed. It is shown both experimentally and with the aid of numerical simulations on multispin systems that when sufficiently fast MAS rates are employed, quantitative dipolar sideband patterns from directly bonded spin pairs can be acquired in the absence of 1H–1H multiple-pulse homonuclear decoupling even for “real” organic solids. The MAS speeds involved are well within the range of commercially available systems (10–14 kHz) and provide sidebands with sufficient intensity to enable a reliable quantification of heteronuclear dipolar couplings from methine groups. Simulations and experiments show that useful information can be extracted in this manner even from more tightly coupled –CH2– moieties, although the agreement with the patterns simulated solely on the basis of heteronuclear interactions is not in this case as satisfactory as for methines. Preliminary applications of this simple approach to the analysis of molecular motions in solids are presented; characteristics and potential extensions of the method are also discussed.  相似文献   

11.
The chiral quark—meson model based on a linear σ model is extended to three flavours of quarks. For an SU(3)-symmetric version of the model we use a lowest-order cranking approach to calculate the splittings between the baryon multiplets. The isospin cranking which governs the octet—decuplet splitting is identical to that in the SU(2) model. The moment of inertia for “strange” rotations gives the energies of states which must involve mesonic excitations. It is found to be small, indicating that such states, if they exist, lie well above the nucleon.  相似文献   

12.
In this Letter we call into question the perturbatively parity breakdown at 1-loop for the massless QED3 frequently claimed in the literature. As long as perturbative quantum field theory is concerned, whether a parity anomaly owing to radiative corrections exists or not shall be definitely proved by using a renormalization method independent of any regularization scheme. Such a problem has been investigated in the framework of BPHZL renormalization method, by adopting the Lowenstein–Zimmermann subtraction scheme. The 1-loop parity-odd contribution to the vacuum-polarization tensor is explicitly computed in the framework of the BPHZL renormalization method. It is shown that a Chern–Simons term is generated at that order induced through the infrared subtractions — which violate parity. We show then that, what is called “parity anomaly”, is in fact a parity-odd counterterm needed for restauring parity.  相似文献   

13.
In this paper, we investigate the employment of a ternary line coding technique based on Ungerboeck's trellis-coded method in asynchronous optical CDMA systems. The ternary coding we use is predicated upon the equal-weight orthogonal (EWO) scheme. Each user transmits two mutually orthogonal signature sequences to represent “+1” and “−1”, respectively, and nothing is transmitted for “0”. The receiver employs a maximum-likelihood soft-decoder to select the path with minimum Euclidean distance as the preferred path. This trellis ternary coding scheme applies set partitioning with partially overlapping subsets to increase the free Euclidean distance, which considerably improves system performance. Furthermore, due to line coding technique, such scheme comprises sufficient clock information, and thus benefits for baseband timing extraction (i.e. clock recovery). Numerical results reveal that the proposed trellis ternary coding scheme can significantly reduce the error floor and allow more active users to be accommodated in the network.  相似文献   

14.
One method for monitoring individuals in live performances may be the use of vibration sensors, or accelerometers, rather than using microphones that pick up environmental noises as well as the vocal signals of interest. This study was concerned with a comparison of microphone and accelerometer monitoring of the amplitude characteristics of singers' voices. From the results obtained it appears that accelerometers are not applicable for monitoring amplitude characteristics of the voice, but are useful for periodicity measures. In addition, accelerometers may be of use in verifying the kinesthetic patterns sensed by a performer during the process of “singing into a mask” or producing the singer's “ring.”  相似文献   

15.
We present a new method for construction of high-order parametrizations of surfaces: starting from point clouds, the method we propose can be used to produce full surface parametrizations (by sets of local charts, each one representing a large surface patch – which, typically, contains thousands of the points in the original point-cloud) for complex surfaces of scientific and engineering relevance. The proposed approach accurately renders both smooth and non-smooth portions of a surface: it yields super-algebraically convergent Fourier series approximations to a given surface up to and including all points of geometric singularity, such as corners, edges, conical points, etc. In view of their C smoothness (except at true geometric singularities) and their properties of high-order approximation, the surfaces produced by this method are suitable for use in conjunction with high-order numerical methods for boundary value problems in domains with complex boundaries, including PDE solvers, integral equation solvers, etc. Our approach is based on a very simple concept: use of Fourier analysis to continue smooth portions of a piecewise smooth function into new functions which, defined on larger domains, are both smooth and periodic. The “continuation functions” arising from a function f converge super-algebraically to f in its domain of definition as discretizations are refined. We demonstrate the capabilities of the proposed approach for a number of surfaces of engineering relevance.  相似文献   

16.
In this paper we present a study of the evolution of the IR and Raman spectrum of pentacene before, during and after irradiation with energetic ion beams, demonstrating the complex chemistry induced by incoming ions. The formation of a “new” aromatic network has been evidenced. Dehydrogenation occurs and the evolution towards what we call an Ion Produced Hydrogenated Amorphous Carbon is a function of the ion dose as well. The results my have noteworthy relevance in astrophysics in view of the presently believed widespread presence of PAHs and their compounds in ours as well as other galaxies.  相似文献   

17.
J. Seifert  H. Winter   《Surface science》2009,603(17):L109-L112
The structure of a monolayer crystalline silica film grown on a Mo(1 1 2) substrate is investigated via grazing scattering of fast atoms. For scattering along low indexed directions in the surface plane (“axial surface channeling”) the corrugation of the interaction potential leads to an azimuthal out-of plane scattering with an intensity enhancement for the maximum deflection angle, the so called “rainbow”. From the comparison of the experimental angular distributions for scattered projectiles with classical trajectory simulations we obtain information on the arrangement of atoms in the topmost surface layer. Our work provides evidence for the structural model of a two-dimensional network for the silica film.  相似文献   

18.
The paper deals with the implementation of the BBM method which enables to measure direct Auger spectraN(E) into the Auger spectrometer with energy modulation on CMA. The arrangement of the modificated Auger spectrometer on the instrumental, hardware and software level is presented. Moreover, the system includes the optional function — the analog background separation — which enables the optimalization of weak Auger signal measurements in a higher energy region. The implementation of the BBM method is convenient to use as a means of innovation of older Auger spectrometers which enable to get the differentiated spectra only.Presented at the Seminar on Secondary Electrons in Electron Spectroscopy, Microscopy, and Microanalysis, Chlum (The Czech Republic), 21–24 September 1993.  相似文献   

19.
20.
Gapped pulses for frequency-swept MRI   总被引:1,自引:0,他引:1  
A recently introduced method called SWIFT (SWeep Imaging with Fourier Transform) is a fundamentally different approach to MRI which is particularly well suited to imaging objects with extremely fast spin–spin relaxation rates. The method exploits a frequency-swept excitation pulse and virtually simultaneous signal acquisition in a time-shared mode. Correlation of the spin system response with the excitation pulse function is used to extract the signals of interest. With SWIFT, image quality is highly dependent on producing uniform and broadband spin excitation. These requirements are satisfied by using frequency-modulated pulses belonging to the hyperbolic secant family (HSn pulses). This article describes the experimental steps needed to properly implement HSn pulses in SWIFT. In addition, properties of HSn pulses in the rapid passage, linear region are investigated, followed by an analysis of the pulses after inserting the “gaps” needed for time-shared excitation and acquisition. Finally, compact expressions are presented to estimate the amplitude and flip angle of the HSn pulses, as well as the relative energy deposited by the SWIFT sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号