首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A novel 3D framework with vertex- and edge-sharing Δ-ribbons extended by ip(2-) connectors, {[Co(7)(H(2)O)(2)(μ(3)-OH)(4)(atz)(2)(ip)(4)]·5H(2)O}(n) (atz(-) = 5-amino-tetrazolate and ip(2-) = isophthalate), exhibits a two-step field-induced metamagnetic transition from an antiferromagnetic ordering to a weak spontaneous magnetization state by spin-competition at 2.0 KOe, followed by a spin-flop transition at 22.5 KOe.  相似文献   

2.
A [Co(6)(μ(3)-OH)(4)(datrz)(2)](6+) ribbon-based blue framework with a metamagnetic transition from an antiferromagnetic ordering to a weak spontaneous magnetization state, {[Co(3)(CH(3)OH)(μ(3)-OH)(2)(datrz)(sip)]·2.25H(2)O}(n) (1, Hdatrz = 3,5-diamino-1,2,4-triazole, sip(3-) = 3,5-dicarboxybenzenesulfonate), was solvothermally synthesized. 1 exhibits a reversible single-crystal-to-single-crystal transformation by solvent exchange to generate a pink antiferromagnetic ordering coordination layer with a similar [Co(6)(μ(3)-OH)(4)(datrz)(2)](6+) ribbon to 1, {[Co(3)(H(2)O)(3)(μ(3)-OH)(2)(datrz)(sip)]·2.125H(2)O}(n) (2). Such concomitant solvatochromic and solvatomagnetic effects are scarcely observed and are significantly due to the coexistence of differently distorted metal coordination spheres and the cleavage/generation of the weak coordination bond.  相似文献   

3.
The reactions of manganese(II) acetate or perchlorate, sodium azide or sodium cyanate, and the zwitterionic dicarboxylate ligand 1,4-bis(4-carboxylatopyridinium-1-methylene)benzene (L) under different conditions yielded three different Mn(II) coordination polymers with mixed carboxylate and azide (or cyanate) bridges: {[Mn (L(1))(0.5)(N(3))(OAc)]·3H(2)O}(n) (1), {[Mn(4)(L(1))(N(3))(8)(H(2)O)(4)(CH(3)OH)(2)]·[L(1)]}(n) (2), and {[Mn(3)(L(1))(NCO)(6)(H(2)O)(4)]·[L(1)]·[H(2)O](2)}(n) (3). The compounds exhibit diverse structures and magnetic properties. In 1, the 1D uniform anionic [Mn(N(3))(COO)(2)](n) chains with the (μ-EO-N(3))(μ-COO)(2) triple bridges (EO = end-on) are interlinked by the dipyridinium L ligands into highly undulated 2D layers. Magnetic studies on 1 reveal that the mixed triple bridges induce antiferromagnetic coupling between Mn(II) ions. Compounds 2 and 3 consist of 1D neutral polymeric chains and co-crystallized zwitterions, and the chains are formed by the L ligands interlinking linear polynuclear units. The polynuclear unit in 2 is tetranuclear with (μ-EO-N(3))(2) as central bridges and (μ-EO-N(3))(2)(μ-COO) as peripheral bridges, while that in 3 is trinuclear with (μ-NCO)(2)(μ-COO) bridges. Magnetic studies demonstrate that the magnetic coupling through the mixed azide/isocyanate and carboxylate bridges in 2 and 3 is antiferromagnetic. An expression of magnetic susceptibility based on a 2-J model for linear tetranuclear systems of classical spins has been deduced and applied to 2.  相似文献   

4.
Two novel Mn(II) coordination polymers with azide and 4-(4-pyridyl)benzoic acid N-oxide (4,4-Hopybz) were synthesized and structurally and magnetically characterized. They are formulated as {[Mn(2)(4,4-opybz)(2)(N(3))(2)(H(2)O)(2)]·H(2)O}(n) (1) and {[Mn(4)(4,4-opybz)(5)(N(3))(H(2)O)(8)](N(3))(2)·2H(2)O}(n) (2). Compound 1 contains 2D coordination layers in which the infinite Mn(II) chains with alternating (μ-EO-N(3))(2)(μ-COO) (EO = end-on) and (μ-COO)(μ-O) bridges are interlinked by the backbones of the organic ligands. Compound 2 is a 3D metal-organic framework in which the unique linear tetranuclear clusters with (μ-EO-N(3))(μ-COO) and (μ-COO)(μ-O) bridges are cross-linked by organic backbones, and it represents a new example of the rare 8-connected self-catenated 3D net with the point symbol 4(16)·6(12). Magnetic analyses on the compounds have been performed in the classical-spin approximation, revealing that all the above-mentioned mixed bridging motifs induce weak antiferromagnetic interactions between Mn(II) ions.  相似文献   

5.
Four new Cu(II) complexes {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(7)H(5)O(2))(2)·6H(2)O 1, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(5)H(6)O(4))·8H(2)O 2, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(C(5)H(6)O(4))(2)·16H(2)O 3 and {[Cu(6)(bpy)(6)(OH)(6)(H(2)O)(2)]}(C(8)H(7)O(2))(6)·12H(2)O 4 were synthesized (bpy = 2,2'-bipyridine, H(2)(C(5)H(6)O(4)) = glutaric acid, H(C(7)H(5)O(2)) = benzoic acid, H(C(8)H(7)O(2)) = phenyl acetic acid). The building units in 1-3 are the tetranuclear [Cu(4)(bpy)(4)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(2)](4+) complex cations, and in 4 the hexanuclear [Cu(6)(bpy)(6)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(4)](6+) complex cations, respectively. The tetra- and hexanuclear cluster cores [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] and [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] in the complex cations could be viewed as from step-like di- and trimerization of the well-known hydroxo-bridged dinuclear [Cu(2)(μ(2)-OH)(2)] entities via the out-of-plane Cu-O(H) bonds. The complex cations are supramolecularly assembled into (4,4) topological networks via intercationic ππ stacking interactions. The counteranions and lattice H(2)O molecules are sandwiched between the 2D cationic networks to form hydrogen-bonded networks in 1-3, while the phenyl acetate anions and the lattice H(2)O molecules generate 3D hydrogen-bonded anionic framework to interpenetrate with the (4,4) topological cationic networks with the hexanuclear complex cations in the channels. The ferromagnetic coupling between Cu(II) ions in the [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] cores of 1-3 is significantly stronger via equatorial-equatorial OH(-) bridges than via equatorial-apical ones. The outer and the central [Cu(2)(OH)(2)] unit within the [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] cluster cores in 4 exhibit weak ferromagnetic and antiferromagnetic interactions, respectively. Results about i.r. spectra, thermal and elemental analyses are presented.  相似文献   

6.
Conventional reactions of the new multidentate ligand 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp, 1) with copper(II) salts lead to four novel multidimensional coordination complexes [Cu(7atp)(mal)(H(2)O)(2)]·H(2)O (2), [Cu(2)(μ-7atp)(4)(H(2)O)(2)](ClO(4))(4)·3H(2)O (3), {[Cu(7atp)(2)(μ-ox)]·3H(2)O}(n) (4) and {[Cu(7atp)(2)(μ-suc)]·2H(2)O}(n) (5), where ox(2-), mal(2-) and suc(2-) mean oxalate, malonate and succinate, respectively. In these compounds, the 7atp ligand coordinates monodentately through its atom N3, except for compound 3, which displays N3-N4 coordination mode, giving rise to all to structures with diverse topologies and dimensionality. Compound 2 is a mononuclear entity, 3 consists of dinuclear species, 4 is a zig-zag chain with oxalate as a bridging ligand and 5 is a succinate-bridged mono-dimensional system. All polynuclear metal complexes show antiferromagnetic interactions of with J values ranging from -0.12 to -49.5 cm(-1). The ligand donor capabilities have been estimated by topological analyses of the electron density (QTAIM) and electron localization function (ELF), obtained by DFT calculations. The compounds are the first structurally characterized copper(II) complexes containing the 7atp ligand.  相似文献   

7.
Wang YQ  Zhang XM  Li XB  Wang BW  Gao EQ 《Inorganic chemistry》2011,50(13):6314-6322
Two coordination polymers formulated as [{[Co(2)(L)(N(3))(4)]·2DMF}(n) (1) and [Mn(2)(L)(H(2)O)(0.5)(N(3))(8)](n) (2) (L = 1,4-bis(4-carboxylatopyridinium-1-methyl)benzene) were synthesized and structurally and magnetically characterized. In compound 1, the anionic uniform Co(II) chains with mixed (μ-EO-N(3))(2)(μ-COO) triple bridges (EO = end-on) are cross-linked by the cationic bis(pyridinium) spacers to generate 2D coordination layers. It was demonstrated that the triple bridges mediate ferromagnetic coupling and that the compound represents a new example of the rare systems exhibiting the coexistence of antiferromagnetic ordering, metamagnetism, and slow magnetic dynamics. Compound 2 features the magnetic Δ-chain formed from isosceles triangular units with single μ-EE-N(3) and double (μ-EO-N(3))(μ-COO) bridges (EE = end-to-end). The Δ-chains are interlinked by long organic ligands into a 3D framework with novel net topology and 3-fold interpenetration. The magnetic properties of 2 indicate the presence of spin frustration characteristic of Δ-chains with antiferromagnetic interactions.  相似文献   

8.
Two new trinuclear copper(II) complexes, [Cu(3)(μ(3)-OH)(daat)(Hdat)(2)(ClO(4))(2)(H(2)O)(3)](ClO(4))(2)·2H(2)O (1) and [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](ClO(4))(2)·3H(2)O (2) (daat = 3,5-diacetylamino-1,2,4-triazolate, Hdat = 3,5-diamino-1,2,4-triazole, and aaat = 3-acetylamino-5-amino-1,2,4-triazolate), have been prepared from 1,2,4-triazole derivatives and structurally characterized by X-ray crystallography. The structures of 1 and 2 consist of cationic trinuclear copper(II) complexes with a Cu(3)OH core held by three N,N-triazole bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with distorted square-pyramidal geometries. The magnetic properties of 1 and 2 and those of five other related 1,2,4-triazolato tricopper(II) complexes with the same triangular structure (3-7) (whose crystal structures were already reported) have been investigated in the temperature range of 1.9-300 K. The formulas of 3-7 are [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](NO(3))(2)·H(2)O (3), {[Cu(3)(μ(3)-OH)(aat)(3)(μ(3)-SO(4))]·6H(2)O}(n) (4), and [Cu(3)(μ(3)-OH)(aat)(3)A(H(2)O)(2)]A·xH(2)O [A = NO(3)(-) (5), CF(3)SO(3)(-) (6), or ClO(4)(-) (7); x = 0 or 2] (aat =3-acetylamino-1,2,4-triazolate). The magnetic and electron paramagnetic resonance (EPR) data have been analyzed by using the following isotropic and antisymmetric exchange Hamiltonian: H = -J[S(1)S(2) + S(2)S(3)] - j[S(1)S(3)] + G[S(1) × S(2) + S(2) × S(3) + S(1) × S(3)]. 1-7 exhibit strong antiferromagnetic coupling (values for both -J and -j in the range of 210-142 cm(-1)) and antisymmetric exchange (G varying from to 27 to 36 cm(-1)). At low temperatures, their EPR spectra display high-field (g < 2.0) signals indicating that the triangles present symmetry lower than equilateral and that the antisymmetric exchange is operative. A magneto-structural study showing a lineal correlation between the Cu-O-Cu angle of the Cu(3)OH core and the isotropic exchange parameters (J and j) has been conducted. Moreover, a model based on Moriya's theory that allows the prediction of the occurrence of antisymmetric exchange in the tricopper(II) triangles, via analysis of the overlap between the ground and excited states of the local Cu(II) ions, has been proposed. In addition, analytical expressions for evaluating both the isotropic and antisymmetric exchange parameters from the experimental magnetic susceptibility data of triangular complexes with local spins (S) of (1)/(2), (3)/(2), or (5)/(2) have been purposely derived. Finally, the magnetic and EPR results of this work are discussed and compared with those of other tricopper(II) triangles reported in the literature.  相似文献   

9.
A (3, 4, 14)-connected framework with complicated distorted triangular magnetic lattices, {[Co(7)(H(2)O)(4)(trz)(8)(sip)(2)]·3H(2)O}(n) (trz = 1,2,4-triazolate, sip = 5-sulfoisophthalate), exhibits continuous field-induced metamagnetic transition from an antiferromagnetic ordering to a ferrimagnetic state at 15 kOe, spin competition at 26 kOe and spin reorientation at 50 kOe, respectively.  相似文献   

10.
Two novel 3-D coordination polymers with different Cu(II) subunits as nodes and mixed bridging ligands as linkers, namely [Cu(5)(μ(3)-OH)(2)(1,3-bip)(2)(CH(3)O-ip)(4)](n) (1) and {[Cu(4)(1,3-btp)(2)(CH(3)O-p)(4)(H(2)O)(2)]·2H(2)O}(n) (2) (CH(3)O-H(2)ip = 5-methoxyisophthalate, 1,3-bip = 1,3-bis(imidazol)propane, 1,3-btp = 1,3-bis(1,2,4-triazol-1-yl)propane), were prepared under hydrothermal conditions. Complex 1 exhibits a CsCl-type network with [Cu(5)(μ(3)-OH)(2)](8+) clusters acting as nodes, which represents the first 3-D network based on pentanuclear Cu(II) clusters. Complex 2 features a 3-D pillared-layer network with (4,6)-connected (4(4).6(2))(4(4).6(8).8(3))-fsc topology, which is a rare example of homometallic coordination polymers constructed by alternate binuclear metal clusters and single metal centres. Variable-temperature magnetic susceptibility measurements show dominant ferromagnetic interactions in the pentanuclear clusters of 1 and strong antiferromagnetic interactions in the dinuclear paddle-wheel units of 2.  相似文献   

11.
Two novel Zn(II) metal-organic frameworks (MOFs) constructed by trinuclear-triangular and paddle-wheel units, namely {[Zn(5)(dmtrz)(3)(IPA)(3)(OH)]·DMF·H(2)O}(n) (MAC-4, Hdmtrz = 3,5-dimethyl-1H-1,2,4-triazole, H(2)IPA = isophthalic acid, DMF = dimethyl formamide) and {[Zn(5)(dmtrz)(3)(OH-IPA)(3)(OH)]·DMF·5H(2)O}(n) (MAC-4-OH, OH-H(2)IPA = 5-hydroxyisophthalic acid), were solvothermally synthesized. Single-crystal analyses reveal that MAC-4-OH is an iso-reticular framework of MAC-4 with channels functionalized by hydroxyl groups. Gas adsorption reveals that MAC-4-OH shows a significant enhancement for CO(2) uptake compared with that of MAC-4 due to the existence of electrostatic attractive interactions, though its surface area is lower than that of MAC-4.  相似文献   

12.
Two new 3D coordination polymers based on tetranuclear clusters, {[Co(4)(ina)(5)(μ(3)-OH)(2)(H(2)O)(EtOH)]-NO(3)·2EtOH·4H(2)O}(n) (1) (Hina = isonicotinic acid) and {[Ni(4)(ina)(5)(μ(3)-OH)(2)(EtCOO)]·6EtOH·2H(2)O}(n) (2), were obtained by the solvothermal reactions from Hina and different metal salts. The [M(4)(μ(3)-OH)(2)] cores act as 7- and 9-connected nodes and are extended through ina linkers to highly-connected frameworks with vmr net for 1 and bct-9-P2(1)/c net for 2. Both the desolvated frameworks display effective gas sorption capacities of N(2) and H(2) with Langmuir surface areas of 546 and 917 m(2) g(-1) for 1 and 2, respectively. Magnetic studies show spin canting and spin-glass behaviours with T(g) = 6.0 and 15.0 K for 1 and 2, respectively. The intra- and inter-tetramer coupling interactions and cooperative magnetic correlation greatly influence the bulk magnetic behaviours in this system.  相似文献   

13.
Low-symmetric complexes {[Co(μ(2)-L)(H(2)O)(2)]·H(2)O}(n) (1) and {[Co(μ(3)-L)(H(2)O)]·0.5H(2)O}(n) (2) and corresponding nanocrystals were obtained, which exhibit structural recurrence behaviour at various temperatures as well as changes of chiral, nonlinear optical and ferroelectric properties.  相似文献   

14.
A new heterometallic Ni(II)-Cu(II) decanuclear cluster, {[Ni(4)Cu(6)(μ-OH(2))(2)(dpkO(2))(8)(OAc)(4)(H(2)O)(4)]·2CH(3)OH·17H(2)O} (1), has been synthesized by self-assembly of the constituent metal ions and the precursor di-2-pyridylketone (dpk) of multinucleating ligand dpkO(2)(2-) and is structurally characterized. The cluster 1 is formed by the union of two symmetry-related distorted cubane-like pentanuclear cores. A magnetic study of 1 reveals strong antiferromagnetic interactions operating through the Ni-O-Ni pathway, which is independent of the assumption D = 0 or D ≠ 0. The pentanuclear cores are ferromagnetically coupled, as supported by density functional theory calculations.  相似文献   

15.
To systematically explore the assembly mechanism of a rutile-type open framework of {[Zn(3)(pbdc)(2)]·2H(3)O}(n) (3) (H(4)pbdc = 5-phosphonobenzene-1,3-dicarboxylic acid) constructed by 3-connected pbdc ligands and 6-connected Zn(3)(CO(2))(4)(PO(3))(2) secondary building units (Zn(3)-SBUs), three major factors including solvothermal procedures, types of solvents and amines, are taken into consideration. Seven novel structures, namely {[Zn(5)(pbdc)(2)(OH)(2)(H(2)O)(4)]·4H(2)O}(n) (1), {[Zn(3)(pbdc)(2)·H(2)O]·(Htea)·H(3)O·2-5(H(2)O)}(n) (2), {[Zn(3)(pbdc)(2)](H(3)O)(2)(dma)}(n) (4), {[Zn(2)(pbdc)(taea)]·3H(2)O}(n) (5), {[Zn(3)(pbdc)(2)(Hpda)(2)]·2H(2)O}(n) (6), {[Zn(5)(pbdc)(2)(Hpbdc)(2)]·2H(2)pz·9H(2)O}(n) (7), {[Zn(3)(pbdc)(2)]·Hpd·H(3)O·4H(2)O}(n) (8) are obtained. The results indicate that the layered-solvothermal method and the isopropanol solvent play crucial roles in the construction of the special anionic open framework of [Zn(3)(pbdc)(2)](2-). Changing these two factors led molecular assembly away from the rutile-type open framework. However, amines play a variable role in the framework, which means that by using appropriate amines, molecular assembly could generate the open framework of [Zn(3)(pbdc)(2)](2-) with pores decorated by amines. These results suggest a different approach towards decorating pores in anionic frameworks with precise structural information.  相似文献   

16.
An uncommon butterfly-like tetranuclear copper(ii) cluster with the formula {[Cu(4)(μ(3)-OH)(2)(μ(4)-Cl)(H(2)O)(2)(L)(2)]·Cl(H(2)O)(7)}(n) (1) (H(2)L = 1,2-bis[3-(1,2,4-triazolyl)-4-amino-5-carboxylmethylthio]ethane) has been synthesized. Compound 1 exhibits interesting anion exchange characteristics, in which both guest and coordinated Cl(-) can be replaced by I(-) or NO(3)(-) in water. Furthermore, a high catalytic selectivity to produce poly(phenylene ether) by the oxidative coupling of 2,6-dimethylphenol in water is found to be 74% for 1 and 87% for the anion-exchanged product 1-MI(x), respectively. Additionally, the antiferromagnetic interaction among Cu ions for compound 1 is also found.  相似文献   

17.
Transition Metal Chemistry - Three new coordination polymers, namely, {[Cu2(bcpmba)(μ4-OH)]·2H2O}n (1), [Mn(Hbcpmba)]n (2), and [Co2(bcpmba)(μ3-OH)·H2O]n (3)...  相似文献   

18.
Five new Zn(II)/Cd(II) coordination polymers constructed from di(1H-imidazol-1-yl)methane (L) mixed with different auxiliary carboxylic acid ligands formulated as [Zn(L)(H(2)L(1))(2)·(H(2)O)(0.2)](n) (1), {[Zn(L)(L(2))]·H(2)O}(n) (2), {[Cd(2)(L)(2)(L(2))(2)]·2H(2)O}(n) (3), {[Cd(L)(L(3))]·H(2)O}(n) (4) and [Cd(L)(L(4))](n) (5) (H(3)L(1) = 1,3,5-benzenetricarboxylic acid, H(2)L(2) = 4,4'-oxybis(benzoic acid), H(2)L(3) = m-phthalic acid and H(2)L(4) = p-phthalic acid) have been synthesized under hydrothermal conditions and structurally characterized. Four related auxiliary carboxylic acids were chosen to examine the influences on the construction of these coordination frameworks with distinct dimensionality and connectivity. The coordination arrays of 1-5 vary from 1D zigzag chain for 1, 2D (4,4) layer for 2-4, to 2-fold interpenetrated 3D coordination network with the α-Po topology for 5. The thermal and photoluminescence properties of complexes 1-5 in the solid state have also been investigated.  相似文献   

19.
[8+12]-metallamacrocycle-based 3D frameworks {[Cu(4)(pbt)(2)(SO(4))(2)(DMF)(2)(CH(3)OH)]·7H(2)O·DMF}(n) (1) and [12]-macrocycle 3D {[Cu(2)(pbt)(SO(4))(DMSO)(CH(3)OH)(2)]·5H(2)O·CH(3)OH}(n) (2) have been obtained. Both complexes display antiferromagnetic couplings and high catalytic activity in the oxidative coupling reaction of 1-ethynylbenzene and oxazolidin-2-one.  相似文献   

20.
Zhang XM  Wang YQ  Song Y  Gao EQ 《Inorganic chemistry》2011,50(15):7284-7294
Three transition-metal coordination polymers with azide and/or carboxylate bridges have been synthesized from 4-(3-pyridyl)benzoic acid (4,3-Hpybz) and 4-(4-pyridyl)benzoic acid (4,4-Hpybz) and characterized by X-ray crystallography and magnetic measurements. Compound 1, [Cu(4,3-pybz)(N(3))](n), consists of 2D coordination networks in which the uniform chains with (μ-EO-N(3))(μ-COO) double bridges are cross-linked by the 4,3-pybz ligands. Compound 2, [Cu(2)(4,4-pybz)(3)(N(3))](n)·3nH(2)O, consists of 2-fold interpenetrated 3D coordination networks with the α-Po topology, in which the six-connected dinuclear motifs with mixed (μ-EO-N(3))(μ-COO)(2) (EO = end-on) triple bridges are linked by the 4,4-pybz spacers. Compound 3, [Mn(4,4-pybz)(N(3))(H(2)O)(2)](n), contains 2D manganese(II) coordination networks in which the chains with single μ-EE-N(3) bridges (EE = end-to-end) are interlinked by the 4,4-pybz ligands, and the structure also features a 2D hydrogen-bonded network in which Mn(II) ions are linked by double triatomic bridges, (μ-EE-N(3))(O-H···N) and (O-H···O)(2). Magnetic studies indicated that the mixed azide and carboxylate bridges in 1 and 2 induce ferromagnetic coupling between Cu(II) ions and that 3 features antiferromagnetic coupling through the EE-azide bridge. In addition, compound 1 exhibits antiferromagnetic ordering below 6.2 K and behaves as a field-induced metamagnet. A magnetostructural survey indicates a general trend that the ferromagnetic coupling through the mixed bridges decreases as the Cu-N-Cu angle increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号