首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A series of benzophenone (BP)‐terminated hyperbranched polyester (BoltornTM P1000), bearing amine moieties as synergists by reacting with piperidine, were synthesized as yellowish liquids with low viscosity, and used as polymeric photoinitiators (HPPIs). For comparison, acrylate groups were introduced to the terminals of hyperbranched polyester for obtaining a polymerizable photoinitiator. The chemical structures were characterized by FTIR and 1H NMR spectroscopy. HPPIs and BP exhibited the similar absorptions by UV–vis spectroscopy. The photoinitiating behavior of HPPIs with trimethylolpropane triacrylate (TMPTA) as a trifunctional monomer was investigated by using photo‐DSC analysis. The results indicated that the maximum photopolymerization rate and unsaturation conversion of TMPTA initiated by HPPIs were both lower than that by BP. Among them, the HPPI with double tertiary amine moiety of BP moiety was found to be the most efficient photoinitiator. Additionally, the films cured with bisphenol A epoxy acrylate EB605 initiated by HPPIs were uniform and possessed high Tg from DMTA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A novel diamine 3,5‐diamino‐4′‐phenoxylbenzophenone (DAPBP) was synthesized from the reaction of 3,5‐diamino‐4′‐chlorobenzophenone (DACBP) and phenol. Then through the polycondensation of DAPBP, toluene‐2,4‐diisocyanate (TDI), and N‐methyldiethanolamine (MDEA), we obtained a PU‐type polymeric photoinitiator containing side‐chain benzophenone (BP) and tertiary amine in the same macromolecule (PUSOA). Another polymeric photoinitiator without coinitiator amine in polymer chain (PUSO) was also synthesized for comparison. FT‐IR, 1H NMR, and GPC analyses confirmed the structures of monomer and polymeric photoinitiators. The UV–Vis spectra of PUSOA, PUSO, and DAPBP are similar, and all exhibit the maximal absorption near 290 nm. ESR spectra indicate that PUSOA can generate active species most efficiently. The photopolymerization of PU acrylate, initiated by PUSOA, PUSO/MDEA, DAPBP/MDEA, and BP/MDEA, was studied by differential scanning photocalorimetry (photo‐DSC). The results show that the in‐chain coinitiator amine can significantly improve the photoefficiency of the polymeric photoinitiator and the PUSOA is more efficient for the polymerization of PU acrylate than its low‐molecular‐weight counterpart. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
In a continuation of research on chemically bonded photoinitiators comprising a structure of planar N‐phenylmaleimide (NPMI) and benzophenone (BP), a novel, highly efficient, polymerizable, sulfur‐containing photoinitiator, 4‐[(4‐maleimido)thiophenyl]benzophenone (MTPBP), was synthesized by the introduction of an NPMI group into BP. Another chemically bonded photoinitiator, 4‐[(4‐maleimido)phenoxy]benzophenone (MPBP), was selected to evaluate its photoefficiency. The results showed that MTPBP possessed a greatly redshifted UV maximal absorption and a very weak fluorescence emission. Electron spin resonance spectra indicated that the C? S bond in its molecule underwent photolysis reactions to generate radicals to initiate the polymerization. Three representative types of different functionality monomers—methyl methacrylate, 1,6‐hexanediol diacrylate, and trimethylolpropane triacrylate—were chosen to be initiated through dilatometry and differential scanning photocalorimetry with unsaturated tertiary amine N,N‐dimethylaminoethyl methacrylate as the coinitiator. The results showed surprisingly high efficiency of MTPBP due to the mutual influence between NPMI and BP as in their physical mixtures and photolysis reactions at the C? S bond. Both MPBP and MTPBP behaved with similar regularity toward different monomers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3738–3750, 2006  相似文献   

4.
《先进技术聚合物》2018,29(8):2264-2272
A new benzodioxole derivative, 4‐(1,3‐benzodioxol‐5‐yloxy) benzophenone (BPBDO), based on benzophenone and sesamol was precisely synthesized, and it can be used as a 1‐component type II photoinitiator. Elementary analysis, atmospheric pressure chemical ionization mass spectrometry, 1H nuclear magnetic resonance, and 13C nuclear magnetic resonance studies revealed that the molecular structure of BPBDO consisted of both benzophenone (BP) and benzodioxole (BDO) structures. The laser flash photolysis experiments and electron spin resonance test indicated that the process of radicals generated from BPBDO after irradiation was similar to 3 processes of ethyl 4‐dimethylaminobenzoate and BP. The kinetics of photopolymerization of the photoinitiator was also studied by real‐time infrared spectroscopy. The oxygen content, light intensity, and viscosity of the monomer affected the decomposition (Rd) and polymerization rate, and the final double bond conversion was also studied. All the results suggest that BPBDO is a 1‐component photoinitiator that is an efficient photoinitiator for free radical polymerization. In contrast to typical dual‐component photoinitiators, eg, BP/ethyl 4‐dimethylaminobenzoate or BP/BDO, BPBDO does not require an additional amine coinitiator for the initiation and is applicable in nonamine resin systems.  相似文献   

5.
用Photo-DSC(光差热扫描)研究了一种可聚合胺助引发剂乙二醇-3-吗啡啉丙酸酯甲基丙烯酸酯(EGMPM)分别与二苯甲酮(BP)、4-(4-甲苯硫基苯基)苯基甲酮(BMS)、4-氯二苯甲酮(CBP)、4-氯甲基二苯甲酮(CMBP)、4-羟甲基二苯甲酮(HMBP)等二芳酮组成的光引发体系引发以1,6-己二醇二丙烯酸酯(HDDA)为单体的紫外光聚合动力学.考察二芳酮质量分数、聚合温度、光照强度对其光聚合动力学影响,并评价其引发效果;同时计算出了EGMPM/BP引发HDDA聚合体系的活化能.结果表明,二芳酮的质量分数增加时,反应达到最大反应速率的时间减少,单体的转化率也相应增加,单体聚合速率相应增大;相同质量分数(0.1%)的不同二芳酮,BMS体系达到最大反应速率的时间最短,单体转化率也最高;随着温度和光强的增加,单体最终转化率、最大反应速率增大,达到最大反应速率所需的时间减少.  相似文献   

6.
Main chain polymeric benzophenone photoinitiator (PBP) was synthesized by using “Thiol‐ene Click Chemistry” and characterized with 1H NMR, FTIR, UV, and phosphorescence spectroscopies. PBP as a polymeric photoinitiator presented excellent absorption properties (ε294 = 28,300 mol?1L?1cm?1) compared to the molecular initiator BP (ε252 = 16,600 mol?1L?1cm?1). The triplet energy of PBP was obtained from the phosphorescence measurement in 2‐methyl tetrahydrofurane at 77 K as 298.3 kJ/mol and according to phosphorescence lifetime, the lowest triplet state of PBP has an n‐π* nature. Triplet–triplet absorption spectrum of PBP at 550 nm following laser excitation (355 nm) were recorded and triplet lifetime of PBP was found as 250 ns. The photoinitiation efficiency of PBP was determined for the polymerization of Hexanedioldiacrylate (HDDA) with PBP and BP in the presence of a coinitiator namely, N‐methyldiethanolamine (MDEA) by Photo‐DSC. The initiation efficiency of PBP for polymerization of HDDA is much higher than for the formulation consisting of BP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
A series of amphiphilic polymeric photoinitiators with hyperbranched poly(ether amine) (hPEA) as novel backbone were developed, which can initiate photopolymerization of water-soluble and hydrophobic monomers very efficiency and might have great potential applications in the field of photo-curing.  相似文献   

8.
Three kinds of macrophotoinitiators, PBP-P, PBP-E and PBP-B, were synthesized by step-polymerization of benzophenone and different coinitiator amino monomers. The low molecular weight analogue, 2,4-di(3-(diethyl amino)-2-hydroxypropoxy)-benzophenone (DAHBP), was also synthesized as a low molecular weight model compound. The UV-vis spectra of PBP-P, PBP-E, PBP-B and DAHBP are similar with large red-shifted maximum absorption comparing with BP. ESR spectra of PBP-P and DAHBP possess the same initiation mechanism with DEBP/TEA systems. The photopolymerization of two monomers with different functionality poly(propylene glycol)diacrylate (PPGDA) and trimethylolpropane triacrylate (TMPTA), initiated by macrophotoinitiators and low molecular weight analogs, was studied through photo-DSC. The results show that different efficiency of photoinitiators towards monomers: first, polymeric photoinitiators are more efficient than low molecular weight analogs; then PBP-E is the most efficient for PPGDA; lastly, PBP-B is the most efficient for TMPTA. The efficiency of the photopolymerization is mainly affected by structure of amine in macrophotoinitiator.  相似文献   

9.
A new three‐component photoinitiating system (based on isopropylthioxanthone ITX, amine AH, and a bifunctional benzophenone–ketosulfone BP‐SK photoinitiator) for acrylate polymerization reactions was investigated through steady‐state photolysis (photodegradation, redox potentials, and acidity release determinations) and time‐resolved laser spectroscopy. The photopolymerization activity has been checked. It is shown that addition of ITX to BP‐SK/AH clearly enhances the efficiency of the photopolymerization of clear or pigmented coatings. This is explained (although, a direct interaction between the triplet state of ITX and BP‐SK occurs to some extents) on the basis of the interaction of BP‐SK with the ketyl radical of ITX. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4531–4541, 2000  相似文献   

10.
Five organosoluble visible light benzophenone derivatives ( BPs ), incorporated different arylamine as electron donating groups have been synthesized and investigated for their roles as photoinitiating systems for free radical photopolymerization of acrylate monomer upon the UV and LED exposure. All the target compounds ( BP-1 – 5 ) have confirmed through 1H NMR, HR-MS/EI-MS spectra and elemental analysis. BPs displayed red-shifted absorption, higher molar extinction coefficient and better thermal properties as compared to reference benzophenone (BP) compound. BP and BPs in combination with hydrogen donor, triethylamine (TEA), are prepared and investigated their electron spin resonance (ESR) spectroscopy and photo-DSC (photo-differential scanning calorimetry). ESR spectra of BP-1 /TEA package showed the highest radical intensity among the test photoinitiator packages. In addition, BP-1- based formulation exhibited the best double bond conversion efficiency than other BPs and comparable to the BP for the free radical polymerization (FRP) of TMPTA under similar UV light source. We then selected BP-1 /TEA and BP/TEA package for FRP under LED light irradiation. Interesting, the BP-1 /TEA system exhibited better efficiency and shorter time at maximum heat flow than BP/TEA. This result indicates BP-1 photoinitiator not only displays good light harvesting, thermal property, but exhibits conversion efficiency under the irradiation of UV and LED.  相似文献   

11.
A one‐component type II photoinitiator (PDBP), based on 4‐hydroxybenzophenone (HBP), acryloyl chloride, and piperazine, was synthesized and its structure was confirmed by 1H‐NMR. The photopolymerization kinetics of the photoinitiator was studied by real‐time Infrared spectroscopy (FT‐IR). It indicated that PDBP was a more effective photoinitiator than that of BP/triethylamine (TEA). The rate of polymerization, final conversion increased and the induction period shortened with increase in PDBP concentration, light intensity, and amine concentration. The kinetics of photopolymerization for TPGDA incorporating PDBP in the presence of different tertiary amines as the initiating system indicated that the PDBP/TEA combination exhibited the highest polymerization rates among the PDBP/amine combinations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Cyclic acetals were proposed as free radical polymerization photoinitiators or co‐initiators. The photopolymerization kinetics was recorded by real‐time infrared spectroscopy (RTIR). 2‐proply‐1,3‐benzodioxole (PBDO) and 2‐hexyl‐1,3‐benzodioxole (HBDO) were efficient photoinitiators for the polymerization of 1,6‐hexanedioldiacrylate (HDDA). Polymerization occurred at the highest rate with 1,3‐benzodioxolane (BDO) as a co‐initiator. When 1.82 wt % benzophenone (BP) was used as a photoinitiator, the addition of PBDO increased the rate of polymerization (Rp) and the final double bond conversion (DCf) of HDDA, and an optimum cure rate (0.982 min?1) was obtained at 1.64 wt % of PBDO. Combination of p‐chlorobenzophenone (CBP) and PBDO had the highest initiating reactivity. Cyclic acetals were inefficient co‐initiators for isopropylthioxanthone (ITX). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A benzophenone derivative photoinitiator, HBP-TDI-HQ-TDI-HBP (HTCTH), was synthesized based on 4-hydroxy benzophenone (HBP), toluene-2,4-diisocyanate (TDI) and hydroquinone (HQ). HTCTH was a more effective photoinitiator which had longer wavelength absorption in the UV-vis absorption spectra than the low molecular counterpart benzophenone (BP). It showed that both rate of polymerization (Rp) and final conversion (P) increased with increase of amine and HTCTH concentration in photopolymerization.  相似文献   

14.
A series of amphiphilic polymeric Michler's ketone (MK) photoinitiators (APMKs) were synthesized by incorporating PEO short chain, MK moiety, and coinitiator amine into the same polymeric chain. APMKs possess good amphiphilic ability and become water‐soluble when the molar ratio of MK(pipaz)2/PEO/piperazine is 2:3:1. UV–Vis measurement shows that APMKs possess the same characteristic absorption to MK derivatives. The photopolymerization of three monomers with different functionality and hydrophilicity, polyethylene glycol diacrylate (PEGDA), phenoxy ethyl acrylate (AMP‐10G), and 2,2‐bis[4‐(acryloxypolyethoxy)phenyl]propane (A‐BPE‐10) initiated by APMKs was investigated by photodifferential scanning (photo‐DSC). The results show that APMKs can photoinitiate the polymerization of hydrophilic and hydrophobic monomers efficiently. As for photopolymerization of water‐soluble PEGDA, the final conversion is higher than 94%. Therefore, APMKs will be expected to find potential in many fields. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
将硫杂蒽酮光引发剂(TX)和共引发剂葡萄糖胺(GA)引入同一个高分子链上,合成新型水溶性高分子型硫杂蒽酮光引发剂(PTX-GA).通过改变PTX-GA中TX与GA的比例,合成了PTX-GA1、PTX-GA2、PTX-GA3,并通过光膨胀计实验研究了3种引发剂引发丙烯酰胺聚合的能力.研究表明这种水溶性高分子型硫杂蒽酮光引发剂即使在没有共引发剂胺的情况下,引发丙烯酰胺(AAM)的聚合效率也非常显著.同时由于它具有水溶性,而且含有生物分子,有利于改善光引发剂的生物相容性.  相似文献   

16.
采用实时红外光谱(RTIR)研究了黄酮(FL)为紫外光光敏剂, 不同氢给体(如叔胺)为助引发剂时三丙二醇二丙烯酸酯(TPGDA)的光聚合反应. 结果表明, FL分子中的大π共轭体系使其UV吸收峰的摩尔消光系数(εmax)远远高于商业化光敏剂二苯甲酮(BP). 当FL与不同助引发剂配合使用时, TPGDA光聚合动力学有较大差异, 其中叔胺体系助引发剂能够与激发态FL发生有效的电子/质子转移过程, 产生胺烷基自由基活性种引发TPGDA的光聚合反应, 所得固化膜的最终双键转化率(DCf)为93%~97%, 接近完全固化; 而芝麻素(SM)及胡椒环(BDO)作为助引发剂时TPGDA的聚合速率则很低, 固化膜的DCf仅为32%~38%. 当光敏剂质量分数为1.0%, 4-N,N'-二甲氨基苯甲酸乙酯(EDAB)质量分数为1.0%时, FL/EDAB引发TPGDA的聚合动力学与商业化BP/EDAB的相同, 所得固化膜的DCf均为97%.  相似文献   

17.
大分子量二苯甲酮光引发剂的合成及动力学研究   总被引:2,自引:0,他引:2  
以4-羟基二苯甲酮(HBP)、甲苯-2,4-二异氰酸酯(TDI)、4,4′-二羟基二苯甲酮(DHBP)为原料,通过两步反应,合成了一种大分子量二苯甲酮光引发剂:HBP-TDI-DHBP-TDI-HBP(HTDTH).通过实时红外研究了HTDTH的光聚合动力学.结果表明,HTDTH是一种有效的光引发剂.采用HTDTH/胺光引发体系引发二缩三丙二醇二丙烯酸酯(TPGDA)聚合时,随着胺和引发剂浓度的增大,反应速率(Rp)和单体最终转化率(P)同时增大.  相似文献   

18.
Summary: Bimolecular type‐II photoinitiators for radical photopolymerization suffer from a diffusion‐controlled limitation of reactivity and from deactivation by back electron transfer. Here, a very efficient concept to increase the photoinitiator activity by the covalent binding of phenylglycine to benzophenone using a methylene spacer is presented. Photo‐DSC experiments proved that the rate of polymerization can be tripled in comparison to a physical mixture of the components or an industrially applied system with triethanolamine as coinitiator.

Structure of the new photoinitiator synthesized here.  相似文献   


19.
Polycaprolactone‐graft‐Poly(2‐(dimethylamino)ethyl methacrylate‐co‐methoxy polyethylene glycol monomethacrylate) (PCL‐graft‐P(DMAEMA‐co‐mPEGMMA)) was synthesized by combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). PCL‐graft‐P(DMAEMA‐co‐mPEGMMA) was characterized by FTIR, 1H NMR, and GPC. PCL‐graft‐P(DMAEMA‐co‐mPEGMMA) with expected composition and structure was achieved. pH‐ and thermo‐sensitive properties of the PCL‐graft‐P(DMAEMA‐co‐mPEGMMA) nanoparticles prepared by the nanoprecipitation method were investigated by TEM and DLS. With increase in the temperature, the size of PCL‐graft‐P(DMAEMA‐co‐mPEGMMA) nanoparticles is decreased under base environment. Furthermore, in vitro transfection and toxicity assays were tested in 293T cells. The results indicate that PCL‐graft‐P(DMAEMA‐co‐PEGMMA) has lower cytotoxicity at N/P ratios less than 10 with transfection efficiency concomitantly reducing at N/P ratios less than 20 compared to PCL‐graft‐PDMAEMA as the control. However, PCL‐graft‐P(DMAEMA‐co‐PEGMMA) presents higher transfection efficiency at N/P ratios more than 20 compared to PCL‐graft‐PDMAEMA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Photopolymerization is extensively used in today's industrial field due to its advantages of rapid reaction, environmental friendly, energy saving and economical. Benzophenone is a most common photoinitiator (PI) using in photopolymerization because of its superior ability to initiate acrylate monomers. However, the intrinsic nature of initiator molecules is that they migrate out of polymer network, which limits its application, especially in the domain of food packaging materials. A polymerizable PI 4‐methylbenzophenone acrylate (MBPAc) was synthesized by a facile procedure and characterized by 1H NMR, 13C NMR, and MS analyses. A systematic study of the photopolymerization kinetics of MBPAc was explored by the Real‐Time Fourier Transform Infrared Spectrometer. The results show that the final conversion and photopolymerization rate of acrylate monomers are closely related to the factors of their chemical structure, viscosity, functionality and light intensity, which means MBPAc is an efficient PI. Ultraviolet‐visible Spectrophotometer and vitro cytotoxicity measurement results indicate that the noncytotoxic MBPAc shows significantly lower migration than its analogue. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 313–320  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号