首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we successfully designed and synthesized a novel phenanthro[1,10,9,8‐c,d,e,f,g]carbazole ( PCZ )‐based copolymer poly[N‐(2‐octyldodecyl)‐4,8‐phenanthro[1,10,9,8‐c,d,e,f,g]carbazole‐alt‐2,5‐dihexadecyl‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione] ( PPDPP ) with an extended π‐conjugation along the vertical orientation of polymer main chain. This polymer exhibited excellent solubility in common solvent and high thermal stability, owning good properties for solution‐processed field‐effect transistors (FETs). Besides, absorption spectra demonstrated that annealing PPDPP thin films led to obviously red‐shifted maxima, indicating the formations of aggregation or orderly π–π stacking in their solid‐state films. X‐ray diffraction measurements indicated the crystallinity of PPDPP thin films was enhanced after high temperature annealing, which was favorable for charge transport. The solution‐processed PPDPP ‐based FET devices were fabricated with a bottom‐gate/bottom‐contact geometry. A high hole mobility of up to 0.30 cm2/Vs and a current on/off ratio above 105 had been demonstrated. These results indicated that the copolymers constructed by this kind of ladder‐type cores could be promising organic semiconductors for high‐performance FET applications. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
Three families of fluorene–oxadiazole‐based polymers with confinement moieties have successfully been prepared by the two‐step method for polyoxadiazole synthesis. These polymers show good solubility in common organic solvents, high thermal stability, and strong violet and blue photoluminescence in solution and as films, respectively. Their low‐lying highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels originate from the electron deficiency of an oxadiazole moiety, and this suggests that they may be useful for blue‐emitting and electron‐transport/hole‐blocking layers in electroluminescent devices. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 674–683, 2003  相似文献   

3.
Three poly(N‐vinylcarbazole) (PVK)‐based polymer electrets were synthesized through Friedel‐Crafts postfunctionalization for the function of charge storage in nonvolatile organic field effect transistor (OFET) memory devices. The bulky side chain effect of these stacked polymer electrets on the morphology, water contact angles, and memory characteristics were examined with regard to those of precursor PVK. The introduction of steric hindrance groups could interrupt the large length of π‐stacked structures in PVK and block the form of region‐regular structures from region‐random on external electric field. As a result, the memories based on the three modified polymers exhibited approximate memory windows of 32 V increased by 13 V with respect to PVK. Besides, the write‐read‐erase‐read cycles stability of the modified polymers was superior to that of PVK. Furthermore, we found that the holes were mainly located in the region of local π‐stacked structures and bulky π‐conjugated groups also acted as additional electron trapping sites. Molecular engineering of charge trapping site with tunneling polymers will be a promise strategy for the advance of transistor memory. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3554–3564  相似文献   

4.
A series of new organic semiconductors based on s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione was successfully synthesized and characterized. The electron withdrawing carbonyl group lowers the LUMO energy levels, leading to increased electronegativities, which is beneficial for high photo‐stability in air. The n‐alkyl substituted compounds, 1c and 1d , crystallize with the rigid coplanar systems packed into slipped face‐to‐face π‐stacks. Interestingly, 1c and 1d also show liquid crystalline behaviors, which give highly ordered molecular packing over large area.  相似文献   

5.
Solution‐processable polymers consisting of perylene diimide (PDI) acceptor moieties alternating with dithienothiophene (DTT), N‐dodecyl‐dithienopyrrole (DTP), or oligomers of these donor groups have been synthesized. We have, in addition to varying the donor, varied the N,N′ substituents of the PDIs. The thermal, optical, electrochemical, and charge‐transport properties of the polymers have been investigated. The polymers show broad absorption extending from 300 to 1000 nm with optical band gaps as low as 1.2 eV; the band gap decreases with increasing the conjugation length of donor block, or by replacement of DTT by DTP. The electron affinities of the polymers, estimated from electrochemical data, range from ?3.87 to ?4.01 eV and are slightly affected by the specific choice of donor moiety, while the estimated ionization potentials (?5.31 to ?5.92 eV) are more sensitive to the choice of donor. Bottom‐gate top‐contact organic field‐effect transistors based on the polymers generally exhibit n‐channel behavior with electron mobilities as high as 1.7 × 10–2 cm2/V/s and on/off ratios as high as 106; one PDI‐DTP polymer is an ambipolar transport material with electron mobility of 4 × 10–4 cm2/V/s and hole mobility of 4 × 10–5 cm2/V/s in air. There is considerable variation in the charge transport properties of the polymers with the chemical structures. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
Some linear π‐conjugated polymers containing 2,4,6‐tris(thiophen‐2‐yl)‐1,3,5‐triazine unit were synthesized via Sonogashira or Suzuki reaction for the first time and characterized by IR, NMR, and GPC. Because of the introduction of 2,4,6‐tris(thiophen‐2‐yl)‐1,3,5‐triazine unit into π‐conjugated system, all polymers exhibited good thermal stability with high decomposition temperature. Their optical and electrochemical properties were investigated. Based on the 2,4,6‐tris(thiophen‐2‐yl)‐1,3,5‐triazine unit linked with different aromatic rings, the polymers showed the tunable fluorescence from blue to blue‐green emission with satisfied quantum yield. Cyclic voltammetry measurement indicated that the LUMO and HOMO levels of the polymers could be adjustable through the main‐chain structural modification. All polymers had low LUMO level (?2.86 to ?3.06 eV) due to the high‐electron affinity of triazine unit. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 702–712, 2008  相似文献   

7.
The systematic optimization of the chemical structure of low‐bandgap (LBG) donor‐acceptor polymeric semiconductors is a challenging task for which accurate guidelines are yet to be determined. Several different structural and molecular parameters are crucial ingredients for obtaining LBG polymers that simultaneously possess high power conversion efficiencies, good processability in common organic solvents, and enhanced stability in organic photovoltaic devices. In this work, we present an extensive structure–optoelectronic properties–solar cell performance study on the emerging class of diketopyrrolopyrrole‐based LBG polymers. In particular, we investigate alkyl side chain positioning by introducing linear alkyl side chains into two different positions (α‐ and β‐), and the distance of the electron rich and electron deficient monomers within the repeat units of the polymer chain. We demonstrate that anchoring linear alkyl side chains to the α‐positions and introducing fused moieties into the polymer backbone, can be beneficial toward maintaining photocurrents similar to the unsubstituted derivative, and concurrently exhibit better processabiliy in common organic solvents. These results can provide a design rationale towards further optimization of semiconducting polymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 138–146  相似文献   

8.
The synthesis, characterization, and photovoltaic properties of a series of four conjugated polymers containing 2‐aryl‐2H‐benzotriazoles and “bis(thiopheno)dialkylfluorenes” is described. The polymers were obtained via Suzuki‐polycondensation and comprise alternating electron rich and electron poor building blocks. The impact of systematic structural changes on the electronic and morphological properties and device efficiencies were studied. Application of these polymers as light‐harvesting and electron‐donating materials in organic solar cells using PCBM derivatives as electron accepting materials resulted in power conversion efficiencies up to 1.8%. Both the properties of the pristine polymers and the device performance show that the impact of the substitution farther‐off the backbone is negligible while substitution directly on the backbone has a major impact. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

9.
Direct arylation polymerization between derivatives of dibromodiketopyrrolopyrrole (DPP) and thienoisoindigo (TIIG) resulted in two π‐conjugated copolymers with average molecular weights up to 24.0 kDa and bandgaps as low as 0.8 eV. The structural analysis of the obtained two polymers revealed well‐defined alternating conjugation backbones without obvious structural defects. The introduction of hexyl‐group in the β‐position of thiophene rings in the DPP units not only reduces the bandgap of conjugated polymer compared to a similar polymer containing bare‐thiophene flanked DPP but also affects polymer morphology in thin films. P‐type charge‐transport characteristics were observed for two polymers in organic field‐effect transistors with comparable hole mobilities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3205–3213  相似文献   

10.
Three donor–acceptor type π‐conjugated monomers containing 2, 1, 3‐benzothiadiazole (Tz) as the acceptor unit and different thiophene derivatives (thiophene, 3,4‐ethylenedioxythiophene, and thieno[3,2‐b]thiophene) as the donor units have been synthesized via Stille coupling reaction. The corresponding polymers are electrochemically deposited onto FTO glass by cyclic voltammetry (CV). The maximum absorption wavelength of the neutral polymers varies with the electron‐rich character of incorporated thiophene moieties, giving rise to tunable colors. In addition, the prepared polymer films demonstrate reasonable transmittance modulation, fast switching rate, high color efficiency and good stability, which meet the requirements of smart windows and electrochromic display applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2239–2246  相似文献   

11.
Poly(p‐divinylene phenylene) derivatives bearing fluorene and carbazole units in the main chain and 5‐phenyl‐1,3,4‐oxadiazole moieties as side groups were prepared by the polycondensation of a newly synthesized monomer, [2‐(5′‐phenyl‐1′,3′,4′‐oxadiazole‐2′‐yl)‐1,4‐xylylene]bis(triphenyl phosphonium bromide) (OXAD), with 9,9‐dibutylfluorene‐2,2′‐dicarbaldehyde (DBFDA) and 9‐(2‐ethylhexyl)carbazole‐3,6‐dicarbaldehyde (EHCDA), which gave DBFDA–OXAD and EHCDA–OXAD. Analogues of these polymers without the side groups were also synthesized by the reaction of 1,4‐xylene bis(triphenyl phosphonium bromide) (PXYL) with the dicarbaldehydes, which gave DBFDA–PXYL and EHCDA–PXYL. All the synthesized polymers are soluble in organic solvents, giving films of good quality. The polymers are stable beyond 375 °C. They emit blue and blue‐green light, and their quantum yields are 38–79% in solution and 1–24% in film, depending on the fluorene and carbazole units as well as the side groups. In particular, the OXAD‐based polymers contain hole‐facilitating backbones and electron‐facilitating side groups, perhaps allowing these polymers to transport both holes and electrons. Overall, the synthesized polymers are potential candidates for the fabrication of light‐emitting devices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1173–1183, 2002  相似文献   

12.
Two novel 9,9‐difunctionalized fluorene‐type monomers, 9,9‐bis(4‐hydroxyphenyl‐ and 4‐aminophenyl)‐2,3:6,7‐dibenzofluorenes, are synthesized by the reaction of dibenzenzofluorenone with phenol and aniline. These monomers are used for the preparation of polyester and polyimide as the typical polymers to evaluate the property change such as thermal stability caused by the benzene rings fused to the fluorene skeleton with keeping good solubility, in comparison with the polymers derived from simple fluorenone. In fact, these two new polymers have the fairly enhanced thermal stability and refractive index value along with satisfactory solubility in organic solvents, enough to emphasize the fusion effect. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2602–2605  相似文献   

13.
Three series of poly(phenylene vinylene) (PPV) derivatives containing hole‐transporting triphenylamine derivatives [N‐(4‐octoxylphenyl)diphenylamine, N,N′‐di(4‐octyloxylphenyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, and N,N′‐di(4‐octoxylphenyl)‐N,N′‐diphenylbenzidine] (donor) and electron‐transporting oxadiazole unit (2,5‐diphenyl‐1,3,4‐oxadiazole) (acceptor) in the main chain were synthesized by improved Wittig copolymerization. The resulting donor–acceptor (D‐A) polymers are readily soluble in common organic solvents, such as chloroform, dichloroethane, THF, and toluene. The polymers containing oxadiazole group exhibit good thermal stability with 5% weight loss above 400 °C. The intramolecular charge‐transfer was observed in these D‐A polymers. In comparison with corresponding polymers without oxadiazole unit, the single‐layer devices based on the D‐A polymers showed much improved electroluminescent properties, because of the balanced charge injection and transport. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1566–1576, 2008  相似文献   

14.
Two conjugated main‐chain polymers consisting of heteroarene‐fused π‐conjuagted donor moiety alternating with 4,7‐bis(5‐bromo‐4‐octylthiophen‐2‐yl)benzo[c][1,2,5]thiadiazole (P1) or 2,5‐bis(5‐bromo‐4‐octylthiophen‐2‐yl) thiazolo[5,4‐d]thiazole (P2) units have been synthesized. They are intrinsically amorphous in nature and do not exhibit crystalline melting temperatures during thermal analysis. The effect of the fused rings on the thermal, optical, electrochemical, charge transport, and photovoltaic properties of these polymers has been investigated. The polymer (P1) containing 4,7‐bis(5‐bromo‐4‐octylthiophen‐2‐yl)benzo[c][1,2,5] thiadiazole has a broad absorption extending from 300 to 600 nm with optical bandgaps as low as 2.02 eV. The HOMO levels (5.42 to 5.29 eV) are more sensitive to the choice of acceptor. The polymers were employed to fabricate organic photovoltaic cells with methanofullerene [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM). As a result, the polymer solar cell device containing P1 had the best preliminary results with an open‐circuit voltage of 0.61 V, a short‐circuit current density of 6.19 mA/cm2, and a fill factor of 0.32, offering an overall power conversion efficiency of 1.21%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
Thieno[3,2‐b]thiophene‐substituted benzo[1,2‐b:4,5‐b′]dithiophene donor units (TTBDT) serve as novel promising building blocks for donor–acceptor (D‐A) copolymers in organic photovoltaic cells. In this study, a new D‐A type copolymer (PTTBDT‐TPD) consisting of TTBDT and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) is synthesized by Stille coupling polymerization. A PTTBDT‐TPD analog consisting of TTBDT and alkylthienyl‐substituted BDT (PTBDT‐TPD) is also synthesized to compare the optical, electrochemical, morphological, and photovoltaic properties of the polymers. Bulk heterojunction photovoltaic devices are fabricated using the polymers as p‐type donors and [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) as the n‐type acceptor. The power conversion efficiencies of the devices fabricated using PTTBDT‐TPD and PTBDT‐TPD are 6.03 and 5.44%, respectively. The difference in efficiency is attributed to the broad UV–visible absorption and high crystallinity of PTTBDT‐TPD. The replacement of the alkylthienyl moiety with thieno[3,2‐b]thiophene on BDT can yield broad UV–visible absorption due to extended π‐conjugation, and enhanced molecular ordering and orientation for organic photovoltaic cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3608–3616  相似文献   

16.
Novel ladder‐type conjugated polymers, fused poly (benzopentalene) derivatives, were synthesized from the readily accessible 1,4‐dibromo‐2,5‐diethynylbenzene derivatives by the Pd‐catalyzed self‐polycondensation in one‐step with high yields. The low solubility of the ladder structure was suggested when the triisopropylsilyl substituents were selected. However, when longer alkyl chains were introduced into the peripheral moieties, such as the dialkylanilino (DAA) and alkyloxyphenyl groups, a high solubility was achieved and the number‐average molecular weight (Mn) reached 18,000. The UV‐Vis absorption spectral shapes of the polymers were similar to the reported dibenzopentalene derivatives, except for the bathochromically shifted end absorptions. This result suggests an extension of the π‐conjugated systems due to the polymerization. Moreover, the almost defect‐free structure of the ladder‐type polymers was confirmed by the quantitative tetracyanoethylene (TCNE) addition to the DAA‐activated alkynes. The titration experiments of TCNE to the polymers revealed the number of terminal alkynes, which enabled us to calculate the molecular weight of the polymers. The calculated molecular weight was consistent with that determined by GPC. After the TCNE addition, the polymer band gaps reasonably decreased as suggested by the UV‐Vis‐NIR absorption and electrochemical measurements. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
The heterocyclic thiazole unit has been extensively used as electron‐deficient building block in π‐conjugated materials over the last decade. Its incorporation into organic semiconducting materials is particularly interesting due to its structural resemblance to the more commonly used thiophene building block, thus allowing the optoelectronic properties of a material to be tuned without significantly perturbing its molecular structure. Here, we discuss the structural differences between thiazole‐ and thiophene‐based organic semiconductors, and the effects on the physical properties of the materials. An overview of thiazole‐based polymers is provided, which have emerged over the past decade for organic electronic applications and it is discussed how the incorporation of thiazole has affected the device performance of organic solar cells and organic field‐effect transistors. Finally, in conclusion, an outlook is presented on how thiazole‐based polymers can be incorporated into all‐electron deficient polymers in order to obtain high‐performance acceptor polymers for use in bulk‐heterojunction solar cells and as organic field‐effect transistors. Computational methods are used to discuss some newly designed acceptor building blocks that have the potential to be polymerized with a fused bithiazole moiety, hence propelling the advancement of air‐stable n‐type organic semiconductors.

  相似文献   


18.
A novel series of soluble hyperbranched interrupted π‐conjugated polymers (HICPs) based on complicated 9,9‐diarylfluorenes (CDAFs) branching core and end‐capped with high carrier‐mobility pyrene moieties were synthesized via the “A2 + A′2 + B3” type Suzuki coupling condensation. The new polymer architecture improves the spectrum stability than the corresponding linear and hyperbranched polymers in PLEDs. Besides, it overcomes the drawback of high driving voltage of common interrupted π‐conjugated polymers. CDAF1 exhibits excellent thermal and morphological stability with a decomposition temperature (Td) higher than 445 °C and a glass transition temperature (Tg) up to 128 °C. No obvious low‐energy green emission band at 520 nm was observed under extreme thermal annealing conditions in air at 200 °C for 12 h. The CDAF1 device shows stable blue emission with the peak at 422 and 447 nm. The Commission International d'Eclairage (CIE) 1931 coordinates is (0.18, 0.16) and the brightness reaches 1051 cd/m2 at 15.7 V. White PLED based on CDAF1/MEH‐PPV blends exhibits a low turn‐on voltage of 4.8 V with voltage‐independent CIE of (0.32, 0.32). Molecular simulations were used to investigate the conformation and interchain interaction. HICPs based on CDAFs tethered with high‐mobility moieties are promising stable blue and host materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6451–6462, 2009  相似文献   

19.
Three 2,3‐bis(5‐hexylthiophen‐2‐yl)‐6,7‐bis(octyloxy)‐5,8‐di(thiophen‐2‐yl)‐quinoxaline ( BTTQ )‐based conjugated polymers, namely, PF‐BTTQ ( P1 ), PP‐BTTQ ( P2 ), and PDCP‐BTTQ ( P3 ), were successfully synthesized for efficient polymer solar cells (PSCs) with electron‐rich units of fluorene and dialkoxybenzene and electron‐deficient unit dicyanobenzene, respectively. All the polymers exhibited good solubility in common organic solvents and good thermal stability. Their deep‐lying HOMO energy levels enabled them good stability in the air and the relatively low HOMO energy level assured a higher open circuit potential when used in PSCs. Bulk‐heterojunction solar cells were fabricated using these copolymers blended with a fullerene derivative as an acceptor. All of them exhibited promising performance, and the best device performance with power conversion efficiency up to 3.30% was achieved under one sun of AM 1.5 solar simulator illumination (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Naphthalene diimide copolymers are attractive n‐type materials due to their high electron affinities, high electron mobilities, and exceptional stability. Herein, we report a series of NDI‐fused‐thiophene based copolymers with each copolymer differing in the number of fused thiophenes in the donor monomer. Increasing the number of fused‐thiophene moieties within an NDI‐copolymer backbone is shown to not only enable tuning of the electronic structure but also improve charge mobilities within the active layer of organic field‐effect transistors. Electron mobilities and on/off ratios as high as 0.012 cm2 V?1 s‐1 and Ion/Ioff > 105 were measured from n‐channel thin‐film transistors fabricated using NDI‐xfTh copolymers. Bulk heterojunction solar cell devices were also fabricated from the NDI‐xfTh copolymer series in blends with poly(3‐hexylthiophene) (P3HT) with PNDI‐4fTh ‐ based devices yielding the largest Jsc (0.57 mA cm?2) and fill factor (55%) in addition to the highest measured PCE for this series (0.13%). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4061–4069  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号