首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
A detailed computational and kinetic analysis of the acetylation of 1‐phenylethanol with acetic anhydride catalyzed by planar chiral 4‐(dimethylamino)pyridine (DMAP) catalyst (?)‐ 1 is presented. The study includes a computational investigation of the potential‐energy surface including the acylation and stereoselective transition states at the DFT level of theory. Experimentally, the kinetic study shows that the reaction proceeds in a first‐order manner in catalyst, whereas both substrates, acetic anhydride and 1‐phenylethanol, show fractional order, which is in accordance with steady‐state conditions. The fractional order depends on an equilibrium between the free catalyst and the acetylated catalyst.  相似文献   

2.
The reaction of 2‐bromo‐5‐nitrothiophene with morpholine was studied as an aromatic nucleophilic substitution reaction in various compositions of methanol with ethyl acetate and aqueous solution of methanol, ethanol, and propane‐2‐ol at 25°C. The second‐order rate coefficients of the reaction were spectrophotometerically determined. It was shown that a mounting trend with the mole fraction of water in aqueous solution of alcohols and a mild decreasing with the mole fraction of ethyl acetate in methanol–ethyl acetate mixtures. Solvent effect investigations based on linear free energy relationship (LFER) confirm that polarity has a major effect, whereas the hydrogen‐bond donor and acceptor abilities of the media have a minor effect on the reaction rate. A nonlinear free energy relationship based on preferential solvation hypothesis showed differences between the microsphere solvation of the solute and the bulk composition of the solvents, and nonideal behavior was observed in the trend of rate coefficients, which was consistent with LFER results. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 59–67, 2013  相似文献   

3.
《中国化学会会志》2018,65(9):1098-1103
A green and efficient one‐pot two‐step synthesis of ethyl 2‐(alkylimino)‐4‐methyl‐3‐(alkanoyl)‐2,3‐dihydrothiazole‐5‐carboxylates from the reaction between acyl chlorides, ammonium thiocyanate, primary alkylamines, and ethyl 2‐chloroacetoacetae under mild, solvent‐ and catalyst‐free conditions at room temperature is presented. This efficient and straightforward technique gave the expected products in good to high yields in 2–4 hr without the creation of any by‐product in all reactions.  相似文献   

4.
Reaction orders for the key components in the palladium(II)‐catalyzed oxidative cross‐coupling between phenylboronic acid and ethyl thiophen‐3‐yl acetate were obtained by the method of initial rates. It turned out that the reaction rate not only depended on the concentration of palladium trifluoroacetate (reaction order: 0.97) and phenylboronic acid (reaction order: 1.26), but also on the concentration of the thiophene (reaction order: 0.55) and silver oxide (reaction order: ?1.27). NMR spectroscopy titration studies established the existence of 1:1 complexes between the silver salt and both phenylboronic acid and ethyl thiophen‐3‐yl acetate. A low inverse kinetic isotope effect (kH/kD=0.93) was determined upon employing the 4‐deuterated isotopomer of ethyl thiophen‐3‐yl acetate and monitoring its reaction to the 4‐phenyl‐substituted product. A Hammett analysis performed with para‐substituted 2‐phenylthiophenes gave a negative ρ value for oxidative cross‐coupling with phenylboronic acid. Based on the kinetic data and additional evidence, a mechanism is suggested that invokes transfer of the phenyl group from phenylboronic acid to a 1:1 complex of palladium trifluoroacetate and thiophene as the rate‐determining step. Proposals for the structure of relevant intermediates are made and discussed.  相似文献   

5.
We present here a highly efficient NHC‐catalyzed kinetic resolution of a wide range of 1,1′‐biaryl‐2,2′‐diols and amino alcohols to provide them in uniformly ≥99 % ee. This represents the first highly enantioselective catalytic acylation of axially chiral alcohols. The aldehyde backbone that is incorporated into the chiral acyl azolium intermediate was found to have a significant effect on the enantioselectivity of the process.  相似文献   

6.
A palladium‐catalyzed, norbornene‐mediated Catellani ortho‐acylation reaction was developed by the use of either acyl chlorides or acid anhydrides as acylation reagents. The addition of more than a stoichiometric amount of H2O is crucial for this transformation when acid chlorides are used, and kinetic studies indicate that the active acylation reagent is possibly an acid anhydride.  相似文献   

7.
《Tetrahedron: Asymmetry》2005,16(9):1603-1610
The dynamic kinetic resolution of secondary alcohols using a lipase and a ruthenium catalyst as developed by Bäckvall required some improvements to make it suitable for its use in an industrial process. The use of p-chlorophenyl acetate as acyl donor is not desirable in view of the toxicity of the side product. We herein report that simple alkyl esters can be used as acyl donors if the alcohol or ketone residue formed during the enzymatic acylation is continuously removed during the reaction. The addition of a ketone speeds up the racemisation process and allowed us to reduce the amounts of enzyme and ruthenium catalyst. The scope of this method was explored and a suitable range of acyl donors found. Various benzylic and aliphatic alcohols were reacted using isopropyl butyrate or methyl phenylacetate as acyl donor and in most cases the ester was isolated in >95% yield and 99% ee. Furthermore, it was demonstrated that the alcohol by-products of the enzymatic resolution could be used as the hydrogen source in the asymmetric reductive transesterification of ketones.  相似文献   

8.
Acylation of (R,S)-1-phenylethanol, which is a product of acetophenone hydrogenation, over a Pd-supported catalyst, was studied in ethyl acetate with an immobilized lipase. It was demonstrated that in the presence of hydrogen and Pd/C in the reaction medium the (R,S)-1-phenylethanol acylation rate is not hindered, whereas the selectivity was strongly altered in the latter case, leading to significant amounts of side products.  相似文献   

9.
Enzymes catalyzing asymmetric carboligation reactions typically show very high substrate specificity for their nucleophilic donor substrate components. Structure‐guided engineering of the thermostable transketolase from Geobacillus stearothermophilus by directed in vitro evolution yielded new enzyme variants that are able to utilize pyruvate and higher aliphatic homologues as nucleophilic components for acyl transfer instead of the natural polyhydroxylated ketose phosphates or hydroxypyruvate. The single mutant H102T proved the best hit toward 3‐methyl‐2‐oxobutyrate as donor, while the double variant H102L/H474S showed highest catalytic efficiency toward pyruvate as donor. The latter variant was able to complement the auxotrophic deficiency of Escherichia coli cells arising from a deletion of the dxs gene, which encodes for activity of the first committed step into the terpenoid biosynthesis, offering the chance to employ a growth selection test for further enzyme optimization.  相似文献   

10.
Two series, totaling twelve, of new compounds, ethyl 1‐aroyl/(aroylmethyl)‐5‐methyl‐3‐methylthiopyrazole‐4‐carboxylates ( 5 / 6 ), have been synthesized via highly regioselectively acylation and alkylation reactions of ethyl 3‐methyl‐5‐methylthio‐1 H‐pyrazole‐4‐carboxylate ( 2a ) with aroyl chloride ( 3 ) and eco‐friendly reagents alpha‐tosyloxysubstituted acetophenones ( 4 ), respectively, and a green protocol has been developed. The acylation reactions were carried out under ultrasound irradiation, and the alkylation reactions were under microwave irradiation and ultrasound irradiation, respectively. Conventional reaction conditions, as well as the use of alpha‐bromosubstituted acetophenone ( 4 ′) have also been applied in the synthesis of some randomly selected compounds in both series and have generated identical compounds correspondingly. Unexpected structures of compounds were unambiguously determined by X‐ray crystallographic analysis.  相似文献   

11.
The reaction mechanism, thermodynamic and kinetic properties for diazotization and nitration of 3,5‐diamino‐1,2,4‐triazole were studied by a density functional theory. The geometries of the reactants, transition states, and intermediates were optimized at the B3LYP/6‐31G (d, p) level. Vibrational analysis was carried out to confirm the transition state structures, and the intrinsic reaction coordinate (IRC) method was used to explore the minimum energy path. The single‐point energies of all stagnation points were further calculated at the B3LYP (MP2)/6‐311+G (2d, p) level. The statistical thermodynamic method and Eyring transition state theory with Wigner correction were used to study the thermodynamic and kinetic characters of all reactions within 0–25°C. Two reaction channels are computed, including the diazotization and nitration of 3‐NH2 or 5‐NH2, and there are six steps in each channel. The reaction rate in each step is increased with temperature. The last step in each channel is the slowest step. The first, second, and fifth steps are exothermic reactions, and are favored at lower temperature in the thermodynamics. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
The reaction of 3‐oxo‐2‐arylhydrazonopropanals with ethyl cyanoacetate in acetic acid containing ammonium acetate was found to afford only 2‐amino‐5‐phenylazonicotinate 9 and not 2‐hydroxy‐6‐substituted‐5‐arylazonicotinates 6 , as has been demonstrated by the obtained X‐ray data. Also, we found that the reaction 3‐oxo‐2‐arylhydrazonopropanals with ethyl cyanoacetate in ethanol containing triethylamine affords only the pyridazinone 11 and the obtained X‐ray data for this compound conclusively prove this structure.  相似文献   

13.
Reaction of ethyl 2‐(3‐pyridyl)acetate 4a or ethyl 2‐methyl‐2‐(3‐pyridyl)acetate 4b , with phenyl chloroformate or methyl chloroform ate, afforded the intermediate pyridinium salt 5 which undergoes regioselective nucleophilic attack at C‐4 upon reaction with a Grignard reagent in the presence of a cuprous iodide catalyst at ?23° to yield the corresponding ethyl 2‐[3‐(1‐phenoxy(methoxy)carbonyl‐4‐aryl(alkyl)‐1,4‐dihydropyridyl)]acetates 6a‐f in 64–96% chemical yield. No product arising from reaction of the ester substituent of the pyridinium salt 5 with the Grignard reagent was observed. The 1H nmr spectra of 6a‐f exhibited dual resonances for the 1,4‐dihydropyridyl H‐2, H‐5 and H‐6 protons at 25° in deuteriochloroform. These dual resonaces were attributed to two different rotameric configurations resulting from restricted rotation about the nitrogen‐to‐carbonyl carbamate bond due to its double bond character. Compound 6 generally exhibited superior analgesic and antiinflammatory activities, compared to the reference drugs aspirin and ibuprofen, respectively. These structure‐activity correlations indicate the 1,4‐dihydropyridyl ring system present in 6 is a suitable bioisostere for the aryl (heteroaryl) ring present in aryl(heteroaryl)acetic acid non‐steroidal antiinflammatory drugs.  相似文献   

14.
The Friedel–Crafts acylation is commonly used for the synthesis of aryl ketones, and a biocatalytic version, which may benefit from the chemo‐ and regioselectivity of enzymes, has not yet been introduced. Described here is a bacterial acyltransferase which can catalyze Friedel–Crafts C‐acylation of phenolic substrates in buffer without the need of CoA‐activated reagents. Conversions reach up to >99 %, and various C‐ or O‐acyl donors, such as DAPG or isopropenyl acetate, are accepted by this enzyme. Furthermore the enzyme enables a Fries rearrangement‐like reaction of resorcinol derivatives. These findings open an avenue for the development of alternative and selective C−C bond formation methods.  相似文献   

15.
On‐surface Pd‐ and Cu‐catalyzed C?C coupling reactions between phenyl bromide functionalized porphyrin derivatives on an Au(111) surface have been investigated under ultra‐high vacuum conditions by using scanning tunneling microscopy and kinetic Monte Carlo simulations. We monitored the isothermal reaction kinetics by allowing the reaction to proceed at different temperatures. We discovered that the reactions catalyzed by Pd or Cu can be described as a two‐phase process that involves an initial activation followed by C?C bond formation. However, the distinctive reaction kinetics and the C?C bond‐formation yield associated with the two catalysts account for the different reaction mechanisms: the initial activation phase is the rate‐limiting step for the Cu‐catalyzed reaction at all temperatures tested, whereas the later phase of C?C formation is the rate‐limiting step for the Pd‐catalyzed reaction at high temperature. Analysis of rate constants of the Pd‐catalyzed reactions allowed us to determine its activation energy as (0.41±0.03) eV.  相似文献   

16.
An efficient Pd‐catalyzed carbonylative α‐arylation of 2‐oxindoles with aryl and heteroaryl bromides for the one‐step synthesis of 3‐acyl‐2‐oxindoles has been developed. This reaction proceeds efficiently under mild conditions and is complementary to the more common oxindole forming reactions. The transformation only requires a mild base and provides good to excellent yields even with heteroaromatic substrates. Employing a near stoichiometric amount of 13COgen, the methodology was easily extended to [13C] acyl labeling. The general applicability of the reaction conditions was demonstrated in the synthesis of a structure related to the pharmaceutically active 3‐acyl‐2‐oxindoles, tenidap.  相似文献   

17.
The condensation reaction of 2‐amino‐5‐tert‐butyl­oxy­methyl‐2‐oxazoline with ethyl cyano­(ethoxy­methyl­ene)­acetate led to the title cycloadduct. The structure indicates a delocalization in the pyrimidine ring.  相似文献   

18.
The condensation reactions of 6,8‐dimethyl‐4‐oxo‐4H‐1‐benzopyran‐3‐carboxaldehyde ( 1 ) with equimolar amounts of ethyl 2‐amino‐4‐(4‐chlorophenyl)‐5‐cyano‐1‐[(5,6‐diphenyl‐1,2,4‐triazin‐3‐yl)amino]‐6‐oxo‐1,6‐dihydropyridine‐3‐carboxylate ( 2 ) at different reaction conditions gave different chromanone and chromenone products 3 , 4 , 5 . Also, the condensation reactions of compound 1 with ethyl 5‐cyano‐1,2‐diamino‐4‐(3‐nitrophenyl)‐6‐oxo‐1,6‐dihydropyridine‐3‐carboxylate ( 6 ) in absolute ethanol, dry benzene, acetic acid, and/or dry xylene gave a variety of products 7 , 8 , 9 , 10 depending on the solvent used.  相似文献   

19.
One-pot synthesis of R-1-phenylethyl acetate was investigated starting from acetophenone hydrogenation performed over Pd/Al2O3 and PdZn/Al2O3 catalysts followed by acylation of the intermediate secondary alcohol, R-1-phenylethanol, over an immobilized lipase. Furthermore, the performance of a third type of catalyst, Ru supported on hydroxyapatite (HAP) was evaluated for racemization of S-1-phenylethanol in one pot together with the two other catalysts. The main objectives of this work were to separate the effects of different catalysts and to reveal the reaction mechanism. For this purpose not only acetophenone, but also (R,S)-1-phenylethanol, S-1-phenylethanol, R-1-phenylethyl acetate, and styrene were used as reactants in combination with Pd/Al2O3, lipase and Ru/HAP as catalysts. The results revealed that the main side product, ethylbenzene, was formed in two different ways, via dehydration of (R,S)-1-phenylethanol to styrene, followed by its rapid hydrogenation to ethylbenzene, and via debenzylation of the desired product, R-1-phenylethyl acetate to ethylbenzene. The true one-pot synthesis, however, was demonstrated over Shvo’s catalyst, but Ru/HAP was not sufficiently active in the racemization step. Ru/Al2O3 was a promising catalyst for racemization of S-1-phenylethanol and for dynamic kinetic resolution of (R,S)-1-phenylethanol, when using only small amounts of the acyl donor ethyl acetate. The challenge in racemization is that the activity of heterogeneous Ru catalysts was inhibited by esters.  相似文献   

20.
4‐Ethoxycarbonyl‐5‐phenyl‐2,3‐dihydrofuran‐2,3‐dione 1 reacts with aldehydes via the acylketene intermediate 2 giving the 1,3‐dioxin‐4‐ones 3a‐e and the 1,4‐bis(5‐ethoxycarbonyl‐4‐oxo‐6‐phenyl‐4H‐1,3‐dioxin‐2‐yl)benzene 4 , and a one step reaction between dibenzoylmethane and oxalylchloride gave 3,5‐dibenzoyl‐2,6‐diphenyl‐4‐pyrone 7 . The reaction of 1 with dibenzoylmethane, a dicarbonyl compound, provided ethyl 3‐benzoyl‐4‐oxo‐2,6‐diphenylpyran‐5‐carboxylate derivative 9 . Compound 9 was converted into the corresponding ethyl 3‐benzoyl‐4‐hydroxy‐2,6‐diphenylpyridine‐5‐carboxylate derivative 10 via its reaction with ammonium hydroxyde solution in 1 ‐butanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号