首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theorem of Mader states that highly connected subgraphs can be forced in finite graphs by assuming a high minimum degree. We extend this result to infinite graphs. Here, it is necessary to require not only high degree for the vertices but also high vertex‐degree (or multiplicity) for the ends of the graph, that is, a large number of disjoint rays in each end. We give a lower bound on the degree of vertices and the vertex‐degree of the ends which is quadratic in k, the connectedness of the desired subgraph. In fact, this is not far from best possible: we exhibit a family of graphs with a degree of order 2k at the vertices and a vertex‐degree of order k log k at the ends which have no k‐connected subgraphs. Furthermore, if in addition to the high degrees at the vertices, we only require high edge‐degree for the ends (which is defined as the maximum number of edge‐disjoint rays in an end), Mader's theorem does not extend to infinite graphs, not even to locally finite ones. We give a counterexample in this respect. But, assuming a lower bound of at least 2k for the edge‐degree at the ends and the degree at the vertices does suffice to ensure the existence (k + 1)‐edge‐connected subgraphs in arbitrary graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 331–349, 2007  相似文献   

2.
For a positive integer n, we introduce the new graph class of n‐ordered graphs, which generalize partial n‐trees. Several characterizations are given for the finite n‐ordered graphs, including one via a combinatorial game. We introduce new countably infinite graphs R(n), which we name the infinite random n‐ordered graphs. The graphs R(n) play a crucial role in the theory of n‐ordered graphs, and are inspired by recent research on the web graph and the infinite random graph. We characterize R(n) as a limit of a random process, and via an adjacency property and a certain folding operation. We prove that the induced subgraphs of R(n) are exactly the countable n‐ordered graphs. We show that all countable groups embed in the automorphism group of R(n). © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 204–218, 2009  相似文献   

3.
?iráň constructed infinite families of k‐crossing‐critical graphs for every k?3 and Kochol constructed such families of simple graphs for every k?2. Richter and Thomassen argued that, for any given k?1 and r?6, there are only finitely many simple k‐crossing‐critical graphs with minimum degree r. Salazar observed that the same argument implies such a conclusion for simple k‐crossing‐critical graphs of prescribed average degree r>6. He established the existence of infinite families of simple k‐crossing‐critical graphs with any prescribed rational average degree r∈[4, 6) for infinitely many k and asked about their existence for r∈(3, 4). The question was partially settled by Pinontoan and Richter, who answered it positively for $r\in(3\frac{1}{2},4)$. The present contribution uses two new constructions of crossing‐critical simple graphs along with the one developed by Pinontoan and Richter to unify these results and to answer Salazar's question by the following statement: there exist infinite families of simple k‐crossing‐critical graphs with any prescribed average degree r∈(3, 6), for any k greater than some lower bound Nr. Moreover, a universal lower bound NI on k applies for rational numbers in any closed interval I?(3, 6). © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 139–162, 2010  相似文献   

4.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

5.
It is easy to characterize chordal graphs by every k‐cycle having at least f(k) = k ? 3 chords. I prove new, analogous characterizations of the house‐hole‐domino‐free graphs using f(k) = 2?(k ? 3)/2?, and of the graphs whose blocks are trivially perfect using f(k) = 2k ? 7. These three functions f(k) are optimum in that each class contains graphs in which every k‐cycle has exactly f(k) chords. The functions 3?(k ? 3)/3? and 3k ? 11 also characterize related graph classes, but without being optimum. I consider several other graph classes and their optimum functions, and what happens when k‐cycles are replaced with k‐paths. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:137‐147, 2011  相似文献   

6.
A biclique of a graph G is a maximal induced complete bipartite subgraph of G. Given a graph G, the biclique matrix of G is a {0,1,?1} matrix having one row for each biclique and one column for each vertex of G, and such that a pair of 1, ?1 entries in a same row corresponds exactly to adjacent vertices in the corresponding biclique. We describe a characterization of biclique matrices, in similar terms as those employed in Gilmore's characterization of clique matrices. On the other hand, the biclique graph of a graph is the intersection graph of the bicliques of G. Using the concept of biclique matrices, we describe a Krausz‐type characterization of biclique graphs. Finally, we show that every induced P3 of a biclique graph must be included in a diamond or in a 3‐fan and we also characterize biclique graphs of bipartite graphs. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 1–16, 2010  相似文献   

7.
For an integer l > 1, the l‐edge‐connectivity of a connected graph with at least l vertices is the smallest number of edges whose removal results in a graph with l components. A connected graph G is (k, l)‐edge‐connected if the l‐edge‐connectivity of G is at least k. In this paper, we present a structural characterization of minimally (k, k)‐edge‐connected graphs. As a result, former characterizations of minimally (2, 2)‐edge‐connected graphs in [J of Graph Theory 3 (1979), 15–22] are extended. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 116–131, 2003  相似文献   

8.
A function between graphs is k‐to‐1 if each point in the codomain has precisely k pre‐images in the domain. Given two graphs, G and H, and an integer k≥1, and considering G and H as subsets of ?3, there may or may not be a k‐to‐1 continuous function (i.e. a k‐to‐1 map in the usual topological sense) from G onto H. In this paper we consider graphs G and H whose order is of a different parity and determine the even and odd values of k for which there exists a k‐to‐1 map from G onto H. We first consider k‐to‐1 maps from K2r onto K2s+1 and prove that for 1≤rs, (r, s)≠(1, 1), there is a continuous k‐to‐1 map for k even if and only if k≥2s and for k odd if and only if k≥?s?o (where ?s?o indicates the next odd integer greater than or equal to s). We then consider k‐to‐1 maps from K2s+1 onto K2s. We show that for 1≤r<s, such a map exists for even values of k if and only if k≥2s. We also prove that whatever the values of r and s are, no such k‐to‐1 map exists for odd values of k. To conclude, we give all triples (n, k, m) for which there is a k‐to‐1 map from Kn onto Km in the case when nm. © 2009 Wiley Periodicals, Inc. J Graph Theory 65: 35–60, 2010.  相似文献   

9.
In this paper we investigate the problem of clique‐coloring, which consists in coloring the vertices of a graph in such a way that no monochromatic maximal clique appears, and we focus on odd‐hole‐free graphs. On the one hand we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, but on the other hand it is NP‐hard to decide if they are 2‐clique‐colorable, and we do not know if there exists any bound k0 such that they are all k0 ‐clique‐colorable. First we will prove that (odd hole, codiamond)‐free graphs are 2‐clique‐colorable. Then we will demonstrate that the complexity of 2‐clique‐coloring odd‐hole‐free graphs is actually Σ2 P‐complete. Finally we will study the complexity of deciding whether or not a graph and all its subgraphs are 2‐clique‐colorable. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 139–156, 2009  相似文献   

10.
A k‐critical (multi‐) graph G has maximum degree k, chromatic index χ′(G) = k + 1, and χ′(Ge) < k + 1 for each edge e of G. For each k ≥ 3, we construct k‐critical (multi‐) graphs with certain properties to obtain counterexamples to some well‐known conjectures. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 27–36, 1999  相似文献   

11.
We show that the four‐cycle has a k‐fold list coloring if the lists of colors available at the vertices satisfy the necessary Hall's condition, and if each list has length at least ?5k/3?; furthermore, the same is not true with shorter list lengths. In terms of h(k)(G), the k ‐fold Hall number of a graph G, this result is stated as h(k)(C4)=2k??k/3?. For longer cycles it is known that h(k)(Cn)=2k, for n odd, and 2k??k/(n?1)?≤h(k)(Cn)≤2k, for n even. Here we show the lower bound for n even, and conjecture that this is the right value (just as for C4). We prove that if G is the diamond (a four‐cycle with a diagonal), then h(k)(G)=2k. Combining these results with those published earlier we obtain a characterization of graphs G with h(k)(G)=k. As a tool in the proofs we obtain and apply an elementary generalization of the classical Hall–Rado–Halmos–Vaughan theorem on pairwise disjoint subset representatives with prescribed cardinalities. © 2009 Wiley Periodicals, Inc. J Graph Theory 65: 16–34, 2010.  相似文献   

12.
For any d?5 and k?3 we construct a family of Cayley graphs of degree d, diameter k, and order at least k((d?3)/3)k. By comparison with other available results in this area we show that our family gives the largest currently known Cayley graphs for a wide range of sufficiently large degrees and diameters. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 87–98, 2010  相似文献   

13.
A graph is walk‐regular if the number of closed walks of length ? rooted at a given vertex is a constant through all the vertices for all ?. For a walk‐regular graph G with d+1 different eigenvalues and spectrally maximum diameter D=d, we study the geometry of its d‐spreads, that is, the sets of vertices which are mutually at distance d. When these vertices are projected onto an eigenspace of its adjacency matrix, we show that they form a simplex (or tetrahedron in a three‐dimensional case) and we compute its parameters. Moreover, the results are generalized to the case of k‐walk‐regular graphs, a family which includes both walk‐regular and distance‐regular graphs, and their t‐spreads or vertices at distance t from each other. © 2009 Wiley Periodicals, Inc. J Graph Theory 64:312–322, 2010  相似文献   

14.
In the class of k‐connected claw‐free graphs, we study the stability of some Hamiltonian properties under a closure operation introduced by the third author. We prove that (i) the properties of pancyclicity, vertex pancyclicity and cycle extendability are not stable for any k (i.e., for any of these properties there is an infinite family of graphs Gk of arbitrarily high connectivity k such that the closure of Gk has the property while the graph Gk does not); (ii) traceability is a stable property even for k = 1; (iii) homogeneous traceability is not stable for k = 2 (although it is stable for k = 7). The article is concluded with several open questions concerning stability of homogeneous traceability and Hamiltonian connectedness. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 30–41, 2000  相似文献   

15.
In the game of cops and robber, the cops try to capture a robber moving on the vertices of the graph. The minimum number of cops required to win on a given graph G is called the cop number of G. The biggest open conjecture in this area is the one of Meyniel, which asserts that for some absolute constant C, the cop number of every connected graph G is at most . In a separate paper, we showed that Meyniel's conjecture holds asymptotically almost surely for the binomial random graph. The result was obtained by showing that the conjecture holds for a general class of graphs with some specific expansion‐type properties. In this paper, this deterministic result is used to show that the conjecture holds asymptotically almost surely for random d‐regular graphs when d = d(n) ≥ 3.  相似文献   

16.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012  相似文献   

17.
The quasi‐random theory for graphs mainly focuses on a large equivalent class of graph properties each of which can be used as a certificate for randomness. For k ‐graphs (i.e., k ‐uniform hypergraphs), an analogous quasi‐random class contains various equivalent graph properties including the kdiscrepancy property (bounding the number of edges in the generalized induced subgraph determined by any given (k ‐ 1) ‐graph on the same vertex set) as well as the kdeviation property (bounding the occurrences of “octahedron”, a generalization of 4 ‐cycle). In a 1990 paper (Chung, Random Struct Algorithms 1 (1990) 363‐382), a weaker notion of l ‐discrepancy properties for k ‐graphs was introduced for forming a nested chain of quasi‐random classes, but the proof for showing the equivalence of l ‐discrepancy and l ‐deviation, for 2 ≤ l < k, contains an error. An additional parameter is needed in the definition of discrepancy, because of the rich and complex structure in hypergraphs. In this note, we introduce the notion of (l,s) ‐discrepancy for k ‐graphs and prove that the equivalence of the (k,s) ‐discrepancy and the s ‐deviation for 1 ≤ sk. We remark that this refined notion of discrepancy seems to point to a lattice structure in relating various quasi‐random classes for hypergraphs. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

18.
《Journal of Graph Theory》2018,87(4):460-474
An odd k‐edge‐coloring of a graph G is a (not necessarily proper) edge‐coloring with at most k colors such that each nonempty color class induces a graph in which every vertex is of odd degree. Pyber (1991) showed that every simple graph is odd 4‐edge‐colorable, and Lužar et al. (2015) showed that connected loopless graphs are odd 5‐edge‐colorable, with one particular exception that is odd 6‐edge‐colorable. In this article, we prove that connected loopless graphs are odd 4‐edge‐colorable, with two particular exceptions that are respectively odd 5‐ and odd 6‐edge‐colorable. Moreover, a color class can be reduced to a size at most 2.  相似文献   

19.
Let γ(G) be the domination number of graph G, thus a graph G is k‐edge‐critical if γ (G) = k, and for every nonadjacent pair of vertices u and υ, γ(G + uυ) = k?1. In Chapter 16 of the book “Domination in Graphs—Advanced Topics,” D. Sumner cites a conjecture of E. Wojcicka under the form “3‐connected 4‐critical graphs are Hamiltonian and perhaps, in general (i.e., for any k ≥ 4), (k?1)‐connected, k‐edge‐critical graphs are Hamiltonian.” In this paper, we prove that the conjecture is not true for k = 4 by constructing a class of 3‐connected 4‐edge‐critical non‐Hamiltonian graphs. © 2005 Wiley Periodicals, Inc.  相似文献   

20.
Quasi‐random graphs can be informally described as graphs whose edge distribution closely resembles that of a truly random graph of the same edge density. Recently, Shapira and Yuster proved the following result on quasi‐randomness of graphs. Let k ≥ 2 be a fixed integer, α1,…,αk be positive reals satisfying \begin{align*}\sum_{i} \alpha_i = 1\end{align*} and (α1,…,αk)≠(1/k,…,1/k), and G be a graph on n vertices. If for every partition of the vertices of G into sets V 1,…,V k of size α1n,…,αkn, the number of complete graphs on k vertices which have exactly one vertex in each of these sets is similar to what we would expect in a random graph, then the graph is quasi‐random. However, the method of quasi‐random hypergraphs they used did not provide enough information to resolve the case (1/k,…,1/k) for graphs. In their work, Shapira and Yuster asked whether this case also forces the graph to be quasi‐random. Janson also posed the same question in his study of quasi‐randomness under the framework of graph limits. In this paper, we positively answer their question. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号