首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase behavior of poly(N‐tertbutylacrylamide‐co‐acrylamide) (PNTBAM) in pure water and mixture of water–methanol is studied at different temperatures. The different compositions of PNTBAM are prepared by free‐radical polymerization technique and their phase behavior is studied by turbidimetry. The effects of copolymer and solvent composition on the phase behavior of the copolymers are discussed. It has been suggested that the inhomogenities in polymer chains are responsible for lowering the rate of phase transition by increasing the N‐tertbutylacrylamide (NTBAM) and methanol contents in copolymer and mixture, respectively. For the first time we have revealed that there are second‐order binary interactions in the water–methanol which are dominant in the special range of copolymer composition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 455–462, 2009  相似文献   

2.
The role of hydrogen bonding in promoting intermolecular cohesion and higher glass‐transition temperatures of polymer is a subject of longstanding interest. A series of poly(vinylphenol‐co‐vinylpyrrolidone) copolymers were prepared by the free‐radical copolymerization of acetoxystyrene and vinylpyrrolidone; this was followed by the selective removal of the acetyl protective group, with corresponding and significant glass‐transition‐temperature increases after this procedure. The incorporation of acetoxystyrene into poly(vinylpyrrolidone) resulted in lower glass‐transition temperatures because of the reduced dipole interactions in its homopolymers. However, the deacetylation of acetoxystyrene to transform the poly(vinylphenol‐co‐vinylpyrrolidone) copolymer enhanced the higher glass‐transition temperature because of the strong hydrogen bonding in the copolymer chain. The thermal properties and hydrogen bonding of these two copolymers were investigated with differential scanning calorimetry and Fourier transform infrared spectroscopy, and good correlations between the thermal behaviors and IR results were observed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2313–2323, 2002  相似文献   

3.
Miscibility and hydrogen bonding interaction have been investigated for the binary blends of poly(butylene adipate‐co‐44 mol % butylene terephthalate)[P(BA‐co‐BT)] with 4,4'‐thiodiphenol (TDP) and poly(ethylene‐ oxide)(PEO) with TDP; and the ternary blends of P(BA‐co‐BT)/PEO/TDP by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The DSC results indicated that the binary blends of P(BA‐co‐BT)/TDP and PEO/TDP were miscible because each blend showed only one composition‐dependent glass‐transition over the entire range of the blend composition. The formation of intermolecular hydrogen bonds between the hydroxyl groups of TDP and the carbonyl groups of P(BA‐co‐BT), and between the hydroxyl groups of TDP and the ether groups of PEO was confirmed by the FTIR spectra. According to the glass‐transition temperature measured by DSC, P(BA‐co‐BT) and PEO, their binary blends were immiscible over the entire range of blend composition, however, the miscibility between P(BA‐co‐BT) and PEO was enhanced through the TDP‐mediated intermolecular hydrogen bonding interaction. It was concluded that TDP content of about 5–10% may possibily enhance miscibility between P(BA‐co‐BT) and PEO via a hydrogen bonding interaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2971–2982, 2004  相似文献   

4.
The syntheses and rheological behavior of ethyl hydroxyethyl cellulose (EHEC)‐based graft‐copolymers were studied. Copolymers were prepared by grafting EHEC with acrylamide (Aam) via reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyl groups of EHEC were esterified with a carboxylic acid functional chain transfer agent (CTA) to prepare EHEC‐macroCTAs with different degrees of substitution. EHEC‐macroCTAs were characterized by ATR‐FTIR, 13C NMR, and SEC, and elemental analysis was used to quantify the degree of CTA substitution. EHEC‐macroCTAs with different degrees of substitution were copolymerized with acrylamide by “grafting from” technique. Formation of new cellulose‐based copolymers was comprehensively confirmed by 1H NMR, ATR‐FTIR, and SEC measurements. Further, the associations of EHEC‐g‐PAam copolymers in water were studied at various concentrations and temperatures by means of UV–vis spectroscopy, fluorescence spectroscopy, and rheological measurements. The results indicate that copolymers have both intra and intermolecular association in water depending on the amount of grafts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1869–1879, 2009  相似文献   

5.
The solvation of two differently composed linear statistical copolymers from N,N‐diethyl acrylamide (DEAm) and N‐isopropyl acrylamide is studied by Fourier‐transform infrared spectroscopy. The solvent is changed from pure water to mixtures with methanol to investigate the cononsolvency effect. Furthermore, the influence of temperature and pressure is studied. The IR results are interpreted by sub‐band fitting of the amide I' band and quantum–chemical calculations. There are significant differences between the two copolymers that cannot be explained by a weighted superposition of the homopolymer spectra. An excess of DEAm units leads to a high number of nonsolvated side chains already in pure water. This high number is reached for equimolar copolymers only when methanol is added. The mechanism of the temperature‐ or pressure‐induced phase transition changes upon methanol addition for both copolymers. Generally, the phenomena are deduced to cooperativity at equimolar composition that is perturbed by methanol. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 532–544  相似文献   

6.
The synthesis and characterization of copolymers containing 2‐ethylhexyl methacrylate and a quadruple‐hydrogen‐bonding site, 2‐ureido‐4[1H]‐pyrimidone methacrylate (UPyMA), are described. An analogous dimeric hydrogen‐bond‐containing copolymer based on 2‐ethylhexyl methacrylate and methacrylic acid (PEHMA‐co‐MAA) was also synthesized for comparative purposes. The glass‐transition temperatures of the poly(2‐ethylhexyl methacrylate‐co‐2‐ureido‐4[1H]‐pyrimidone methacrylate) (PEHMA‐co‐UPyMA) series increased linearly with increasing UPyMA content. Creep compliance measurements as a function of temperature indicated a decrease in the creep compliance with increasing UPyMA content over the range of 1–10 mol % UPyMA. Melt rheological analysis also showed an increase and lengthening of the plateau modulus as a function of frequency with increasing UPyMA content, as well as increasing complex viscosity as a function of temperature. The analogous PEHMA‐co‐MAA copolymer, which contained 11 mol % methacrylic acid, showed, in the melt rheological analysis, behavior similar to that of the PEHMA‐co‐UPyMA copolymer containing only 1 mol % UPyMA units. The multiple‐hydrogen‐bond‐containing copolymers were successfully analyzed with time–temperature superposition for the construction of master curves. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4618–4631, 2005  相似文献   

7.
Reversible addition fragmentation chain transfer polymerization afforded triple hydrogen‐bonding block copolymers (PBA‐b‐PDAD) with well‐controlled molecular weight and molecular weight distributions (1.2–1.4). The complexation via specific hydrogen bonding between these block copolymers in CHCl3 provided an unprecedented approach for the formation of spherical vesicles. Atomic force microscopy and dynamic light‐scattering measurements revealed that the resultant polymeric vesicles were about 100 nm in radius. Triple hydrogen‐bonding interactions between maleimide and PBA‐b‐PDAD resulted in the dissociation of these spherical vesicles, facilitating the guest molecule recognition. The hydrogen‐bonding interaction between maleimide and the PBA‐b‐PDAD was further confirmed by 1H NMR and FTIR spectra. These results indicated that these vesicles of triple hydrogen‐bonding block copolymer could be a potential new vehicle for molecular recognition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1633–1638  相似文献   

8.
The preparation of a series of copolymers of Nt‐butylacrylamide (NTBAM) with acrylamide (AM) is reported. The insolubility of NTBAM in water led to the testing of methanol, t‐butanol, and mixtures of these solvents with water to obtain effective copolymerization. Several of these polymerizations produced nonhomogeneous product mixtures. Samples of the components were separated and characterized by photoacoustic Fourier transform infrared spectroscopy and 13C NMR spectroscopy. Hydrodynamic volumes of the products were obtained from solution‐viscosity measurements, gel permeation chromatography, and multi‐angle laser light scattering methods. The NTBAM‐co‐AM copolymers had degrees of polymerization and molecular weights in the 4.1–5.9 × 104 monomer units and 3.25–4.5 × 106 g/mol range, respectively. They contained from 15 to 36 mol % NTBAM. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 1960–1977, 2001  相似文献   

9.
A series of poly(N‐isopropylacrylamide‐coN‐hydroxymethylacrylamide) P(NIPAM‐co‐NHMA) copolymers were firstly synthesized via free radical polymerization. Then, the hydrophobic, photosensitive 2‐diazo‐1,2‐naphthoquinone (DNQ) molecules were partially and randomly grafted onto P(NIPAM‐co‐NHMA) backbone through esterification to obtain a triple‐stimuli (photo/pH/thermo) responsive copolymers of P(NIPAM‐co‐NHMA‐co‐DNQMA). UV‐vis spectra showed that the lower critical solution temperature (LCST) of P(NIPAM‐co‐NHMA) ascended with increasing hydrophilic comonomer NHMA molar fraction and can be tailored by pH variation as well. The LCST of the P(NIPAM‐co‐NHMA) went down firstly after DNQ modification and subsequently shifted to higher value after UV irradiation. Meanwhile, the phase transition profile of P(NIPAM‐co‐NHMA‐co‐DNQMA) could be triggered by pH and UV light as expected. Thus, a triple‐stimuli responsive copolymer whose solution properties could be, respectively, modulated by temperature, light, and pH, has been achieved. These stimuli‐responsive properties should be very important for controlled release delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2763–2773, 2009  相似文献   

10.
Development of effective organocatalysts for the living ring‐opening polymerization (ROP) of lactones is highly desired for the preparation of biocompatible and biodegradable polyesters with controlled microstructures and physical properties. Herein, a new class of hydrogen‐bond donating bisurea catalysts is reported for the ROP of lactones under solvent‐free conditions. ROP of lactones mediated by the bisurea/7‐methyl‐1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (MTBD) catalyst exhibits a living/controlled manner, affording the polymers and copolymers with the well‐defined structure, predictable molecular weight, narrow molecular weight distribution, and high selectivity for monomer at low catalyst loadings at ambient temperature. The possible mechanism of bisurea/MTBD‐catalyzed ROP of lactones is proposed, in which the bisurea activates the carbonyl group of lactones while MTBD facilitates the nucleophilic attack of the initiating/propagating alcohol by hydrogen bonding. Moreover, the poly(ε‐caprolactone‐co‐δ‐valerolactone) [P(CL‐co‐VL)] random copolymers with various compositions were synthesized using the bisurea/MTBD catalyst. The measurements of thermal properties and crystalline structure demonstrate that the CL and VL units are cocrystallized in the crystalline phase of P(CL‐co‐VL) copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 90–100  相似文献   

11.
A series of poly(o‐/m‐toluidine‐coo‐/m‐chloroaniline) copolymers of different compositions were synthesized by an emulsion method with ammonium persulfate as the oxidant. The conductivity of the copolymers was two to five orders of magnitude higher than that of the homopolymers poly(o‐toluidine) and poly(m‐chloroaniline). Among the copolymers, the copolymer of o‐toluidine and m‐chloroaniline exhibited a maximum conductivity of 0.14 S cm?1. The conductivity of these copolymers was also higher than that of poly(aniline‐co‐chloroaniline). The properties of the copolymers were greatly influenced by the positions of the substituents and the concentrations of the individual monomers in the feed. All the copolymers were completely soluble in polar solvents such as dimethyl sulfoxide and showed higher heat stability as the chloroaniline concentration increased. These effects could be interpreted in terms of extensive hydrogen bonding and interchain linking and, therefore, higher electron delocalization in these copolymers due to the presence of electron‐rich toluidine rings adjacent to electron‐deficient chloroaniline. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1579–1587, 2005  相似文献   

12.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization produced novel ABA triblock copolymers with associative urea sites within pendant groups in the external hard blocks. The ABA triblock copolymers served as models to study the influence of pendant hydrogen bonding on polymer physical properties and morphology. The triblock copolymers consisted of a soft central block of poly(di(ethylene glycol) methyl ether methacrylate) (polyDEGMEMA, 58 kg/mol) and hard copolymer external blocks of poly(2‐(3‐hexylureido)ethyl methacrylate‐co‐2‐(3‐phenylureido)ethyl methacrylate) (polyUrMA, 18‐116 kg/mol). Copolymerization of 2‐(3‐hexylureido)ethyl methacrylate (HUrMA) and 2‐(3‐phenylureido)ethyl methacrylate (PhUrMA) imparted tunable hard block Tg's from 69 to 134 °C. Tunable hard block Tg's afforded versatile thermomechanical properties for diverse applications. Dynamic mechanical analysis (DMA) of the triblock copolymers exhibited high modulus plateau regions (∼100 MPa) over a wide temperature range (−10 to 90 °C), which was indicative of microphase separation. Atomic force microscopy (AFM) confirmed surface microphase separation with various morphologies. Variable temperature FTIR (VT‐FTIR) revealed the presence of both monodentate and bidentate hydrogen bonding, and pendant hydrogen bonding remained as an ordered structure to higher than expected temperatures. This study presents a fundamental understanding of the influence of hydrogen bonding on polymer physical properties and reveals the response of pendant urea hydrogen bonding as a function of temperature as compared to main chain polyureas. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1844–1852  相似文献   

13.
Novel polystyrene derivatives comprising [1‐(3‐isopropenyl‐phenyl)‐1‐methyl‐ethyl]‐carbamate in the side chain were synthesized as photoreactive copolymers. Poly(4‐vinylphenol) was made to react with 1‐(1‐isocyanato‐1‐methyl‐ethyl)‐3‐isopropenyl‐benzene (m‐TMI) and the unreacted hydroxyl groups were protected with acetyl chloride. The copolymers are highly sensitive to the radical photoinitiators that can be activated by irradiation of UV light (λ = 300–365 nm). FTIR spectroscopy was employed to monitor the structural changes in the copolymers exposed to UV irradiation. The dielectric properties of the copolymers were investigated by measuring the capacitance and calculating the permittivity as a function of frequency, along with the IV characteristics. Their properties were compared with those of thermally crosslinkable poly(4‐vinylphenol) blended with poly(melamine‐co‐formaldehyde), which is frequently used as a dielectric layer in organic field‐effect transistors (OFETs). No significant dielectric dispersion was observed in the frequency range of 1 kHz–1 MHz. The dielectric constant was determined to be in the range of 4.2–6.0, which offers a potential for the application of these copolymers to OFET gate insulators. These soluble dielectrics exhibit good film uniformity and can also be patterned using a standard photolithographic technique. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1710–1718, 2008  相似文献   

14.
The enzyme‐catalyzed synthesis of poly(p‐ethylphenol) (PEP) has received considerable interest in recent years. Nevertheless, the limited molecular weights restricts its application. In our preliminary research, PEP was modified by copolymerization with polycarbonates through both transesterification at high temperature, and triphosgene at low temperature to form polycarbonate‐co‐poly(p‐ethylphenol) (PC‐co‐PEP). FTIR, NMR, GPC, and thermal analysis verified the formation of PC‐co‐PEP. The copolymers have an optical absorption in the UV range. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 169–178, 1999  相似文献   

15.
Exothermic nonreversing process is predicted to present in the phase transition of poly(N‐isopropylacrylamide) (PNIPAM). By employing TOPEM‐DSC, exothermic nonreversing heat flow peak is observed for the first time, and it usually appears under nonquasi‐static conditions. The exothermic nonreversing heat flow is proved to be from the formation of hydrogen bonds by the comparative studies on the phase transition of poly(N,N‐diethylacrylamide) (PDEAM) and cyclic heating and cooling of PDEAM and PNIPAM. Further TOPEM‐DSC studies on the phase transition of poly(NIPAM‐co‐DEAM) and poly(NIPAM‐co‐AAm) prove that hydrophobic force rather than hydrogen bonding is the main driving force for the phase transition, and hydrophobic force is also the driving force for the formation of inter‐ and intrachain hydrogen bonding. However, the phase transition driven by only hydrophobic force is a slow process. The combined action of hydrogen bonding and hydrophobic force makes the phase transition occur much faster. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1869–1877  相似文献   

16.
In this work, we report a series of poly(itaconic acid‐co‐acrylic acid‐co‐acrylamide) (poly(IA‐co‐AAc‐co‐AAm)) hydrogels via frontal polymerization (FP). FP starts on the top of the reaction mixture with aid of heating provided from soldering iron gun. Once polymerization initiated, no further energy is required to complete the process. The influences of IA/AAc weight ratios on frontal velocities, temperatures, and conversions on the reaction time are thoroughly investigated and discussed where the amount of AAm monomer remains constant. Fourier transform‐infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), dynamic mechanical analysis, and the swelling measurement are applied to characterize the as‐synthesized poly(IA‐co‐AAc‐co‐AAm) hydrogels. Interestingly, the swelling ratios of the hydrogels are changed with different IA/AAc contents, and the maximum swelling ratios are ~4439% in water. SEM images describe highly porous morphologies and explain good swelling capabilities. Moreover, the poly(IA‐co‐AAc‐co‐AAm) hydrogels exhibit superior pH‐responsive ability. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2214–2221  相似文献   

17.
A series of amphiphilic cationic random copolymers, namely poly[2‐(methacryloyloxy)ethyl trimethylammonium chloride‐co‐stearyl methacrylate] or poly(MADQUAT‐co‐SMA), have been synthesized via conventional free‐radical copolymerization using 2,2′‐azobisisobutyronitrile (AIBN) as initiator and n‐dodecanethiol as chain transfer agent. The resultant products were then characterized by FT‐IR, 1H NMR, MALDI‐TOF MS measurements. From the number‐average molecular weights of the copolymers, we can conclude that these copolymers have oligomeric structure with a limited number of hydrophilic and hydrophobic moieties in a short polymer chain. The reactivity ratios (rMADQUAT = 0.83, rSMA = 0.25) between the hydrophilic MADQUAT monomer and the hydrophobic SMA monomer were calculated by the Finemann and Ross method, which was based on the results of 1H NMR analysis. The surface activity of the random copolymers was studied by the combination of surface tension and contact angle measurement, and the results indicated that these copolymers possess relatively high surface activity. The critical aggregation concentrations (cac) of the copolymers in aqueous solution were determined by fluorescence probe method as well as surface tension measurement. The different nanoparticles of poly(MADQUAT‐co‐SMA) copolymers formed in pure water or ethanol‐water mixture were proved by the particle size and size distribution in the measurement of dynamic light scattering (DLS). Furthermore, using transmission electron microscopy (TEM), we could observe various self‐assembly morphologies of these random copolymer. All these results show that the amphiphilic cationic random copolymers have a good self‐assembly behavior, even if they are ill‐defined copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4670–4684, 2009  相似文献   

18.
In this work, poly(4‐vinylbenzylboronic acid‐co‐4(5)‐vinylimidazole) (poly(4‐VBBA‐co‐4‐Vim)) copolymers were synthesized by free‐radical copolymerization of the monomers 4‐VBBA and 4‐Vim at various monomer feed ratios. The copolymers were characterized by 1H MAS NMR and 11B MQ‐MAS NMR methods and the copolymer composition was determined via elemental analysis. The membrane properties of these copolymers were investigated after doping with phosphoric acid at several stoichiometric ratios. The proton exchange reaction between acid and heterocycle is confirmed by FTIR. Thermal properties of the samples were investigated via thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC). The morphology of the copolymers was characterized by x‐ray diffraction, XRD. The temperature dependence of proton conductivities of the samples was investigated by means of impedance spectroscopy. Proton conductivity of the copolymers increased with the doping ratio and reached to 0.0027 S/cm for poly(4‐VBBA‐co‐4‐Vim)/2H3PO4 in the anhydrous state. The boron coordination in the copolymer was determined by 11B MQ‐MAS experiment and the coexistence of three and four coordinated boron sites was observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1267–1274, 2009  相似文献   

19.
We prepared the sequence‐controlled block copolymers including poly(1‐adamantyl acrylate) (PAdA) and poly(n‐butyl acrylate) sequences as the hard and soft segments, respectively, by the organotellurium‐mediated living radical polymerization. The thermal, optical, and mechanical properties of the adamantane‐containing block copolymers with polar 2‐hydroxyethyl acrylate (HEA) and acrylic acid (AA) repeating units were investigated. The microphase‐separated structures of the block copolymers were confirmed by the differential scanning calorimetry and atomic force microscopy observations as well as dynamic mechanical measurements. The α‐ and β‐dispersions due to the main‐chain and side group molecular motions, respectively, of the hard and soft segments were observed. Their transition temperatures and activation energies increased due to the formation of intermolecular hydrogen bonding by the introduction of the HEA and AA repeating units. The effects of the hydrogen bonding on their tensile elasticity, strength, and strain were also evaluated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2899–2910  相似文献   

20.
Novel poly(methacrylamide‐co‐2‐acrylamido‐2‐methyl‐ 1‐propanesulfonic acid) (poly(MAAm‐co‐AMPS)) hydrogels were synthesized by free radical polymerization of methacrylamide (MAAm) and 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) in deionized water at 60 °C by using ammonium peroxydisulfate (APS), N,N′‐methylenebisacrylamide (MBAAm) and N,N,N′,N′‐tetramethylethylenediamine (TEMED) as initiator, crosslinker, and activator, respectively. To investigate the effects of feed content on the pH‐ and temperature‐dependent swelling behavior of poly(MAAm‐co‐AMPS), molar ratio of MAAm to AMPS in feed was varied from 90/10 to 10/90. Structural characterization of gels was performed by Fourier transform infrared (FTIR) spectroscopy using attenuated total reflectance (ATR) technique. Thermal and morphological characterizations of gels were performed by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Although an apparent pH‐sensitivity was not observed for the poly(MAAm‐co‐AMPS) gels during the swelling in different buffer solutions, their temperature‐sensitivity became more evident with the increase in AMPS content of copolymer. Thermal stability of poly(MAAm‐co‐AMPS) gels increased with MAAm content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号