首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the 1H and 13C NMR spectra of 1‐(2‐selenophenyl)‐1‐alkanone oximes, the 1H, the 13C‐3 and 13C‐5 signals of the selenophene ring are shifted by 0.1–0.4, 2.5–3.0 and 5.5–6.0 ppm, respectively, to higher frequencies, whereas those of the 13C‐1, 13C‐2 and 13C‐4 carbons are shifted by 4–5, ~11 and ~1.7 ppm to lower frequencies on going from the E to Z isomer. The 15N chemical shift of the oximic nitrogen is larger by 13–16 ppm in the E isomer relative to the Z isomer. An extraordinarily large difference (above 90 ppm) between the 77Se resonance positions is revealed in the studied oxime isomers, the 77Se peak being shifted to higher frequencies in the Z isomer. The trends in the changes of the measured chemical shifts are well reproduced by the GIAO calculations of the 1H, 13C, 15N and 77Se shielding constants in the energy‐favorable conformation with the syn orientation of the? C?N? O? H group relative to the selenophene ring. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The 15N as well as 1H and 13C chemical shifts of nine substituted tetrazolopyridines and their corresponding tetrazolopyridinium salts have been determined by using NMR spectroscopy at the natural abundance level of all nuclei in CD3CN. In this paper, we report, for the first time, the N‐alkylation reaction of electron deficient tetrazolopyridines. The treatment of tetrazolopyridines 5–13 with one equivalent of trialkyloxonium tetrafluoroborate leads to a mixture of two isomers, i.e. N3‐ and N2‐alkyl tetrazolo[1,5‐a]pyridinium salts. It has been observed that the N3‐isomer is always the major isomer, except in the case of the CF3 substituent, where the two isomers are obtained in the same amount. The quaternary tetrazolopyridinium nitrogen N3 is shielded by around 100 ppm (parts per million) with respect to the parent tetrazolopyridine. Experimental data are interpreted by means of density functional theory (DFT) calculations, including solvent‐induced effects, within the conductor‐like polarizable continuum model (CPCM). Good agreements between theoretical and experimental 1H, 13C and 15N NMR were found. The combination of multinuclear magnetic resonance spectroscopy with gauge including atomic orbital (GIAO) DFT calculations is a powerful tool in the structural elucidation for both neutral and cationic heterocycles and in the determination of the orientation of N‐alkylation of tetrazolopyridines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
According to the 1H, 13C and 15N NMR spectroscopic data and DFT calculations, the E‐isomer of 1‐vinylpyrrole‐2‐carbaldehyde adopts preferable conformation with the anti‐orientation of the vinyl group relative to the carbaldehyde oxime group and with the syn‐arrangement of the carbaldehyde oxime group with reference to the pyrrole ring. This conformation is stabilized by the C? H···N intramolecular hydrogen bond between the α‐hydrogen of the vinyl group and the oxime group nitrogen, which causes a pronounced high‐frequency shift of the α‐hydrogen signal in 1H NMR (~0.5 ppm) and an increase in the corresponding one‐bond 13C–1H coupling constant (ca 4 Hz). In the Z‐isomer, the carbaldehyde oxime group turns to the anti‐position with respect to the pyrrole ring. The C? H···O intramolecular hydrogen bond between the H‐3 hydrogen of the pyrrole ring and the oxime group oxygen is realized in this case. Due to such hydrogen bonding, the H‐3 hydrogen resonance is shifted to a higher frequency by about 1 ppm and the one‐bond 13C–1H coupling constant for this proton increases by ~5 Hz. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
In the acetylenic aldehyde oximes with substituents containing silicon and germanium, the 13C NMR signal of the C‐2 carbon of triple bond is shifted by 3.5 ppm to lower frequency and that of the C‐3 carbon is moved by 7 ppm to higher frequency on going from E to Z isomer. A greater low‐frequency effect of 5.5 ppm on the C‐2 carbon signal and a greater high‐frequency effect of 11 ppm on the C‐3 carbon signal are observed in the analogous acetylenic ketone oximes. The carbon chemical shift of the C?N bond is larger by 4 ppm in E isomer relative to Z isomer for the aldehyde and ketone oximes. The 29Si chemical shifts in the silicon containing acetylenic aldehyde and ketone oximes are almost the same for the diverse isomers. The trends in changes of the measured chemical shifts are well reproduced by the gauge‐including atomic orbital (GIAO) calculations of the 13C and 29Si shielding constants. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The main factors affecting the accuracy and computational cost of the gauge‐independent atomic orbital density functional theory (GIAO‐DFT) calculation of 15N NMR chemical shifts in the representative series of key nitrogen‐containing heterocycles – azoles and azines – have been systematically analyzed. In the calculation of 15N NMR chemical shifts, the best result has been achieved with the KT3 functional used in combination with Jensen's pcS‐3 basis set (GIAO‐DFT‐KT3/pcS‐3) resulting in the value of mean absolute error as small as 5 ppm for a range exceeding 270 ppm in a benchmark series of 23 compounds with an overall number of 41 different 15N NMR chemical shifts. Another essential finding is that basically, the application of the locally dense basis set approach is justified in the calculation of 15N NMR chemical shifts within the 3–4 ppm error that results in a dramatic decrease in computational cost. Based on the present data, we recommend GIAO‐DFT‐KT3/pcS‐3//pc‐2 as one of the most effective locally dense basis set schemes for the calculation of 15N NMR chemical shifts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
15N NMR chemical shifts of 2‐aryl‐1,3,4‐oxadiazoles were assigned on the basis of the 1H–15N HMBC experiment. Chemical shifts of the nitrogen and carbon atoms in the oxadiazole ring correlate with the Hammett σ‐constants of substituents in the aryl ring (r2 ≥ 0.966 for N atoms). 15N NMR data are a suitable and sensitive means for characterizing long‐range electronic substituent effects. Additionally, 13C NMR data for these compounds are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Seven new oligomeric complexes of 4,4′‐bipyridine; 3,3′‐bipyridine; benzene‐1,4‐diamine; benzene‐1,3‐diamine; benzene‐1,2‐diamine; and benzidine with rhodium tetraacetate, as well as 4,4′‐bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid‐state nuclear magnetic resonance spectroscopy, 13C and 15N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4′‐bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2′‐bipyridine with rhodium tetraacetate exhibiting axial–equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The 15N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex ? δligand). This parameter ranged from around ?40 to ?90 ppm in the case of heteroaromatic ligands, from around ?12 to ?22 ppm for diamines and from ?16 to ?31 ppm for the complexes of molybdenum tetracarboxylates with 4,4′‐bipyridine. The experimental results have been supported by a density functional theory computation of 15N NMR chemical shifts and complexation shifts at the non‐relativistic Becke, three‐parameter, Perdew‐Wang 91/[6‐311++G(2d,p), Stuttgart] and GGA–PBE/QZ4P levels of theory and at the relativistic scalar and spin‐orbit zeroth order regular approximation/GGA–PBE/QZ4P level of theory. Nucleus‐independent chemical shifts have been calculated for the selected compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Long‐range β‐ and γ‐relativistic effects of halogens in 15N NMR chemical shifts of 20 halogenated azines (pyridines, pyrimidines, pyrazines, and 1,3,5‐triazines) are shown to be unessential for fluoro‐, chloro‐, and bromo‐derivatives (1–2 ppm in average). However, for iodocontaining compounds, β‐ and γ‐relativistic effects are important contributors to the accuracy of the 15N calculation. Taking into account long‐range relativistic effects slightly improves the agreement of calculation with experiment. Thus, mean average errors (MAE) of 15N NMR chemical shifts of the title compounds calculated at the non‐relativistic and full 4‐component relativistic levels in gas phase are accordingly 7.8 and 5.5 ppm for the range of about 150 ppm. Taking into account solvent effects within the polarizable continuum model scheme marginally improves agreement of computational results with experiment decreasing MAEs from 7.8 to 7.4 ppm and from 5.5 to 5.3 ppm at the non‐relativistic and relativistic levels, respectively. The best result (MAE: 5.3 ppm) is achieved at the 4‐component relativistic level using Keal and Tozer's KT3 functional used in combination with Dyall's relativistic basis set dyall.av3z with taking into account solvent effects within the polarizable continuum solvation model. The long‐range relativistic effects play a major role (of up to dozen of parts per million) in 15N NMR chemical shifts of halogenated nitrogen‐containing heterocycles, which is especially crucial for iodine derivatives. This effect should apparently be taken into account for practical purposes.  相似文献   

9.
The isomeric structures of oximes, nitrones and nitroso compounds may be readily differentiated on the basis of their nitrogen chemical shifts. The tautomeric equilibria present in oximenitroso systems are easily observed by means of 14N NMR spectroscopy. An explanation of the range of chemical shifts found within the oxime and nitrone groups of compounds is presented, based upon the average excitation energy approximation to the paramagnetic term in the nuclear screening tensor. The increase in screening of the nitrogen found upon protonation of an oxime is analogous to that observed for pyridine-type structures and their N-oxides.  相似文献   

10.
The calculation of 15N NMR chemical shifts of 27 azoles and azines in 10 different solvents each has been carried out at the gauge including atomic orbitals density functional theory level in gas phase and applying the integral equation formalism polarizable continuum model (IEF‐PCM) and supermolecule solvation models to account for solvent effects. In the calculation of 15N NMR, chemical shifts of the nitrogen‐containing heterocycles dissolved in nonpolar and polar aprotic solvents, taking into account solvent effect is sufficient within the IEF‐PCM scheme, whereas for polar protic solvents with large dielectric constants, the use of supermolecule solvation model is recommended. A good agreement between calculated 460 values of 15N NMR chemical shifts and experiment is found with the IEF‐PCM scheme characterized by MAE of 7.1 ppm in the range of more than 300 ppm (about 2%). The best result is achieved with the supermolecule solvation model performing slightly better (MAE 6.5 ppm). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The 1H, 13C and 15N NMR studies have shown that the E and Z isomers of pyrrole‐2‐carbaldehyde oxime adopt preferable conformation with the syn orientation of the oxime group with respect to the pyrrole ring. The syn conformation of E and Z isomers of pyrrole‐2‐carbaldehyde oxime is stabilized by the N? H···N and N? H···O intramolecular hydrogen bonds, respectively. The N? H···N hydrogen bond in the E isomer causes the high‐frequency shift of the bridge proton signal by about 1 ppm and increase the 1J(N, H) coupling by ~3 Hz. The bridge proton shows further deshielding and higher increase of the 1J(N, H) coupling constant due to the strengthening of the N? H···O hydrogen bond in the Z isomer. The MP2 calculations indicate that the syn conformation of E and Z isomers is by ~3.5 kcal/mol energetically less favorable than the anti conformation. The calculations of 1H shielding and 1J(N, H) coupling in the syn and anti conformations allow the contribution to these constants from the N? H···N and N? H···O hydrogen bondings to be estimated. The NBO analysis suggests that the N? H···N hydrogen bond in the E isomer is a pure electrostatic interaction while the charge transfer from the oxygen lone pair to the antibonding orbital of the N? H bond through the N? H···O hydrogen bond occurs in the Z isomer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
1H, 13C, and 15N NMR chemical shifts for pyridazines 4–22 were measured using 1D and 2D NMR spectroscopic methods including 1H? 1H gDQCOSY, 1H? 13C gHMQC, 1H? 13C gHMBC, and 1H? 15N CIGAR–HMBC experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
15N NMR data for a series of 12 para‐substituted benzamidoximes and benzamidinium salts were determined in dimethyl sulfoxide. For the amino group of benzamidoximes 1J(N,H) coupling constants were determined using polarization transfer techniques; the other 15N atoms were not detectable owing to fast exchange processes and, thus, standard proton noise decoupled spectra had to be measured. The 15N NMR chemical shifts of the oxime‐type nitrogen atom and the benzamidinium amino group (with two exceptions) correlate with Hammett σ° values (r2>0.95). 15N NMR shift data are a suitable and sensitive means for characterizing far‐ranging electronic substituent effects in these functional groups. Additionally, 13C NMR data in dimethyl sulfoxide solution are given. All spectroscopic data will be used for investigations into the mechanisms of the enzymes involved in the metabolic cycle of oxidation and reduction of benzamidines and benzamidoximes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Derivatives of 3-imidazoline 3-oxide have been studied by 14N and 17O NMR methods. Regularities of the influence of substituents and of a hydrogen bond on chemical shifts have been made apparent. The range of changes of the chemical shifts of the nitrogen and oxygen nuclei of the nitrone group has been determined. Both in the 17O and in the 14N NMR spectra the signals of the amino derivatives are the highest field signals for the nitrone group, and the lowest field signals are the signals of the cyano derivatives in the series of derivatives investigated. Depending on the substituent (from amino to cyano group) the 17O chemical shifts varied over a range ∼155 ppm, but the interval of change of the 14N chemical shifts for the same substituents was ∼110 ppm. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1336–1341. September, 2005.  相似文献   

15.
The 1H and 13C NMR resonances of 16 purine glucosides were assigned by a combination of one‐ and two‐dimensional NMR experiments, including gs‐COSY, gs‐HSQC, and gs‐HMBC, in order to characterize the effect of substituent and the position of glucose unit on the NMR chemical shifts. In addition, 15N NMR chemical shifts for selected derivatives were investigated by using 1H? 15N chemical shift correlation techniques. To map the influence of sugar moiety on the directly bonded nitrogen atom, selected N9‐glucosides and their ribose analogs were compared. Characteristic long‐range 1H? 15N coupling constants, measured by using 1H? 15N gradient‐selected single‐quantum multiple bond correlation (GSQMBC), are also reported and discussed. All compounds investigated here belong to cytokinins, an important group of plant hormones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In the 13C NMR spectra of methylglyoxal bisdimethylhydrazone, the 13C‐5 signal is shifted to higher frequencies, while the 13C‐6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the 1H‐6 chemical shift and 1J(C‐6,H‐6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the –CH═N– bond does not change. This paradox can be rationalized by the C–H?N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum‐chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ(1H‐6) and 1J(C‐6,H‐6) parameters. The effect of the C–H?N hydrogen bond on the 1H shielding and one‐bond 13C–1H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The 1H, 13C and 15N chemical shifts of the 2‐ and 8‐(CH3)2N groups attached to the –C(CH3)═N– and –CH═N– moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8‐(CH3)2N group conjugate effectively with the π‐framework, and the 2‐(CH3)2N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N‐2– and N‐8– nitrogen lone pairs to the π‐framework varies, which affects the 1H, 13C and 15N shieldings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A series of novel menthone oxime ethers were synthesized in three steps starting from (–)-menthol. Analysis of the 13C NMR chemical shift differences between α carbons of oxime derivatives (O-alkyl oximes) provides a convenient and reliable means of assigning oxime stereochemistry. It has been found that carbons syn to the oxime are shifted more upfield than carbons anti to the oxime moiety. Significant E products were obtained.  相似文献   

18.
A systematic study of the accuracy factors for the computation of 15N NMR chemical shifts in comparison with available experiment in the series of 72 diverse heterocyclic azines substituted with a classical series of substituents (CH3, F, Cl, Br, NH2, OCH3, SCH3, COCH3, CONH2, COOH, and CN) providing marked electronic σ‐ and π‐electronic effects and strongly affecting 15N NMR chemical shifts is performed. The best computational scheme for heterocyclic azines at the DFT level was found to be KT3/pcS‐3//pc‐2 (IEF‐PCM). A vast amount of unknown 15N NMR chemical shifts was predicted using the best computational protocol for substituted heterocyclic azines, especially for trizine, tetrazine, and pentazine where experimental 15N NMR chemical shifts are almost totally unknown throughout the series. It was found that substitution effects in the classical series of substituents providing typical σ‐ and π‐electronic effects followed the expected trends, as derived from the correlations of experimental and calculated 15N NMR chemical shifts with Swain–Lupton's F and R constants.  相似文献   

19.
The 15N NMR chemical shifts of N7‐ and N9‐substituted purine derivatives were investigated systematically at the natural abundance level of the 15N isotope. The NMR chemical shifts were determined and assigned using GSQMBC, GHMBC, GHMQC and GHSQC experiments in solution. 15N cross‐polarization magic angle spinning data were recorded for selected compounds in order to study the principal values of the 15N chemical shifts. Geometric parameters obtained by using RHF/6–31G** and single‐crystal x‐ray structural analysis were used to calculate the chemical‐shielding constants (GIAO and IGLO) which were then used to assign the nitrogen resonances observed in the solid‐state NMR spectra and to determine the orientation of the principal components of the shift tensors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
In this article, we describe the characteristic 15N and 1HN NMR chemical shifts and 1J(15N–1H) coupling constants of various symmetrically and unsymmetrically substituted 1,4‐dihydropyridine derivatives. The NMR chemical shifts and coupling constants are discussed in terms of their relationship to structural features such as character and position of the substituent in heterocycle, N‐alkyl substitution, nitrogen lone pair delocalization within the conjugated system, and steric effects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号