首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To further evaluate the feasibility and applicability of the one‐pot strategy in monolithic column preparation, two novel β‐cyclodextrin‐functionalized organic polymeric monoliths were prepared using two β‐cyclodextrin derivatives, i.e. mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin and heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin. In this improved method, mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin or heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin reacted with glycidyl methacrylate to generate the corresponding functional monomers and were subsequently copolymerized with ethylene dimethacrylate. The polymerization conditions for both monoliths were carefully optimized to obtain satisfactory column performance with respect to column efficiency, reproducibility, permeability, and stability. The obtained poly(glycidyl methacrylate‐mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) and poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monoliths exhibited a uniform structure, good permeability, and mechanical stability as indicated by scanning electron microscopy and micro‐high‐performance liquid chromatography experimental results. Because of the probable existence of multi‐glycidyl methacrylate linking spacers on the poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monolith, the effect of the ratio of glycidyl methacrylate/heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin was especially studied, and satisfactory reproducibility could still be achieved by strictly controlling the composition of the polymerization mixture. To investigate the effect of the degree of amino substitution of β‐cyclodextrin on column performance, a detailed comparison of the two monoliths was also carried out using series of analytes including small peptides and chiral acids. It was found that the β‐cyclodextrin‐functionalized monolith with mono‐glycidyl methacrylate linking spacers demonstrated better chiral separation performance than that with multi‐glycidyl methacrylate linking spacers.  相似文献   

2.
The first member of the single‐isomer, dicationic cyclodextrin (CD) family, 6A‐ammonium‐6C‐butylimidazolium‐β‐cyclodextrin chlorides (AMBIMCD), has been synthesized, analytically characterized, and used to separate a variety of acidic enantiomers and amino acids by CE. Starting from mono‐6A‐azido‐β‐cyclodextrin, the cationic imidazolium and ammonium moieties were subsequently introduced onto primary ring of β‐cyclodextrin via nucleophilic addition and Staudinger reaction. The analytically pure AC regio‐isomer CD was further obtained via column chromatography. This dicationic CD exhibited excellent enantioselectivities for selected analytes at concentration as low as 0.5 mM, which were even better than those of its mono‐imidazolium or ammonium‐substitued counterpart CDs at 10 equivalent concentrations. The effective mobilities of all studied analytes were found to decrease with the concentration of AMBIMCD. Inclusion complexation in combination with eletrostatic interactions seemed to account for the enhanced chiral discrimination process.  相似文献   

3.
A new member of the family of methoxylalkylamino monosubstituted β‐cyclodextrins, mono‐6A‐(4‐methoxybutylamino)‐6A‐β‐cyclodextrin, has been developed as a chiral selector for enantioseparation in capillary electrophoresis. This amino cyclodextrin exhibited good enantioselectivities for 16 model acidic racemates including three dansyl amino acids at an optimum pH of 6.0. Excellent chiral resolutions over six were obtained for α‐hydroxy acids and 2‐phenoxypropionic acids with 3.0 mM chiral selector. The good chiral recognition for α‐hydroxyl acids was attributed to inclusion complexation, electrostatic interactions, and hydrogen bonding. The hydrogen‐bonding‐enhanced chiral recognition was revealed by NMR spectroscopy. The chiral separation of acidic racemates was further improved with the addition of methanol (≤10 vol%) as an organic additive.  相似文献   

4.
Graphene/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin multilayer films composed of graphene sheet (GS) and mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (NH2β‐CD) were fabricated easily by two steps. First, negatively charged graphene oxide (GO) and positively charged mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (NH2β‐CD) were layer‐by‐layer (LBL) self‐assembled on glassy carbon electrode (GCE) modified with a layer of poly(diallyldimethylammonium chloride) (PDDA). Then graphene/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (GS/NH2β‐CD) multilayer films were built up by electrochemical reduction of graphene oxide/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (GO/NH2β‐CD). Combining the high surface area of GS and the active recognition sites on β‐cyclodextrin (β‐CD), the GS/NH2β‐CD multilayer films show excellent electrochemical sensing performance for the detection of DA with an extraordinary broad linear range from 2.53 to 980.05 µmol·L?1. This study offers a simple route to the controllable formation of graphene‐based electrochemical sensor for the detection of DA.  相似文献   

5.
A simple procedure for the synthesis of three new oxazolinyl‐substituted β‐cyclodextrins (6‐deoxy‐6‐R‐(–)‐4‐phenyl‐4,5‐dihydrooxazolinyl‐β‐cyclodextrin, 6‐deoxy‐6‐S‐(–)‐4‐phenyl‐4,5‐dihydrooxazolinyl‐β‐cyclodextrin, and 6‐deoxy‐6‐S‐(–)‐(4‐pyridin‐1‐ium‐4‐methyl‐benzenesulphonate)‐4,5‐dihy‐drooxazolinyl‐β‐cyclodextrin) and their covalent bonding to silica are reported. The ability of these chiral stationary phase columns for separating compounds is also presented and discussed. Twenty‐eight compounds were examined in the polar‐organic mobile phase mode, and 11 β‐nitroethanols were tested in the reversed‐phase mode. Excellent enantioseparations were achieved for most of the analytes, even for several challenging compounds. The rigid and flexible structures of mono‐substituted chiral groups and the fragments around the rim of the β‐cyclodextrin cavity played an important role in the separation process. Factors such as π–π stacking, dipole–dipole interactions, ion‐pairing, and steric hindrance effects were found to affect the chromatographic performance. Moreover, the buffer composition, and percentages of organic modifiers in the mobile phase, were investigated and compared. The mechanisms involved in the separation were postulated based on the chromatographic data.  相似文献   

6.
In this study, a series of novel CD chiral stationary phases were fabricated by immobilization of mono‐6A‐deoxy‐N3‐cyclodextrin onto silica surfaces followed by click regulation of CD primary face with 4‐pentynoic acid (acidic moiety), 2‐propynylamine (alkaline moiety) and L‐propargylglycine (chiral amino acid moiety), respectively. Enantioseparations of various kinds of racemates including dansyl‐amino acids, chiral lactides and diketones were conducted in reversed phase modes on these chiral stationary phases, where nearly forty diketones and chiral lactides were firstly separated on cyclodextrin stationary phases. 4‐Pentynoic acid moiety can make the retention ability decline while amine moiety significantly enhanced the retention ability of the stationary phases. For most of the studied analytes, the chiral amino acid moiety had the most positive effects on both the retention time and the resolution. The inclusion complexation between chiral analytes and cyclodextrins were also investigated by fluorescence method.  相似文献   

7.
To improve resolution power of chiral selector and enantiomeric peak efficiency in CE, single isomer negatively charged β‐CD derivatives, mono(6‐deoxy‐6‐sulfoethylthio)‐β‐CD (SET‐β‐CD) bearing one negative charge and mono[6‐deoxy‐6‐(6‐sulfooxy‐5,5‐bis‐sulfooxymethyl)hexylthio]‐β‐CD (SMHT‐β‐CD) carrying three negative charges, were synthesized. The structure of these two β‐CD derivatives was confirmed by 1H NMR and MS. SET‐β‐CD and SMHT‐β‐CD successfully resolved the enantiomers of several basic model compounds. SMHT‐β‐CD provided for a significantly greater enantioseparation than SET‐β‐CD at lower concentrations. This appears to be due to the higher binding affinity of SMHT‐β‐CD to the model compounds and the wider separation window resulting from an increased countercurrent mobility of the selector. Overall, the new chiral selectors provided enantioseparations with high peak efficiency while avoiding peak distortion due to polydispersive and electrodispersive effects. The information obtained from an apparent binding constant study suggested that the enantioseparation of the model compounds followed the predictions of charged resolving agent migration model and that the observed degree of enantioseparation difference were due to the magnitude of differences in both enantiomer‐chiral selector binding affinities (ΔK) and the mobilities of the complexed enantiomers (Δμc).  相似文献   

8.
A biphasic chiral recognition system based on chiral ligand exchange with Cu(II)‐Nn‐dodecyl‐L‐proline and hydroxypropyl‐β‐cyclodextrin as an additive was developed to enantioseparate aromatic β‐amino acids by high‐speed counter‐current chromatography. The biphasic chiral recognition system was established with an n‐butanol/water (1:1, v/v) solvent system by adding Nn‐dodecyl‐L‐proline and Cu(II) ions to the organic phase and hydroxypropyl‐β‐cyclodextrin to the aqueous phase. Several separation parameters, such as temperature, pH value, and chiral selector concentration, were systematically investigated by enantioselective liquid–liquid extraction. Under the optimal separation conditions, 54.5 mg of (R,S)‐β‐phenylalanine and 74.3 mg of (R,S)‐β‐3,4‐dimethoxyphenylalanine were baseline enantioseparated. More importantly, the synergistic enantiorecognition mechanism, based on the Cu(II)‐Nn‐dodecyl‐L‐proline and hydroxypropyl‐β‐cyclodextrin, was discussed for the first time.  相似文献   

9.
《Electrophoresis》2018,39(2):348-355
A new single‐urea‐bound chiral stationary phase based on 3,5‐dimethylphenylcarbamoylated β‐cyclodextrin was prepared through the Staudinger reaction of mono (6A‐azido‐6A‐deoxy)‐per(3,5‐dimethylphenylcarbamoylated) β‐cyclodextrin and 3‐aminopropyl silica gel under CO2 atmosphere. The new phase exhibited good enantioseparation performance for 33 analytes using normal‐phase HPLC conditions; 19 of them were baseline separated. Effects of structure of analytes, alcoholic modifiers, and acidic/basic additives on separation performances of this new cyclodextrin chiral stationary phase have been studied in detail. The results showed that the retention and resolution of acidic and basic analytes on the CSP were greatly affected by the additives. Peak symmetry for some analytes could be improved by simultaneously adding acidic and basic additives to the mobile phase. This work expands the potential applications of the cyclodextrin‐based chiral stationary phases in the normal‐phase HPLC.  相似文献   

10.
New random copolymers, poly(N‐vinyl‐2‐pyrrolidone‐co‐mono‐6‐deoxy‐6‐methacrylate ethylamino‐β‐cyclodextrin) (PnvpCD) bearing pendent β‐cyclodextrin (CD) groups were synthesized. PnvpCD formed soluble graft‐like polymer complex with adamantane (AD) end‐capped poly(ε‐caprolactone) (PclAD) in their common solvent N‐methyl‐2‐pyrrolidone driven by the inclusion interactions between the CD and AD groups. The formation of the graft complex has been confirmed by viscometry, dynamic light scattering (DLS), and isothermal titration calorimeter. The graft complex self‐assembled further into noncovalently connected micelles in water, which is a selective solvent for the main chain PnvpCD. Transmission electron microscopy, DLS, and atomic force microscopy have been used to investigate the structure and morphology of the resultant micelles. A unique “multicore” structure of the micelles, in which small PclAD domains scattered within the micelles, was obtained under nonequilibrium conditions in the preparation. However, the micelles prepared in a condition close to equilibrium possess an ordinary core‐shell structure. In both cases, the core and shell are believed to be connected by the AD‐CD inclusion complexation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4267–4278, 2009  相似文献   

11.
《Analytical letters》2012,45(2):335-347
Abstract

Capillary zone electrophoresis resolutions of 2,4‐dinitrophenyl labeled amino acids (DNP‐AAs) enantiomers using three N‐methylated amino‐β‐cyclodextrins (CDs) [6I‐deoxy‐6I‐monomethylamino‐β‐CD (M‐A‐βCD), 6I‐deoxy‐6I‐dimethylamino‐β‐CD (diM‐A‐βCD), 6I‐deoxy‐6I‐trimethylammonium‐β‐cyclodextrin (triM‐A‐βCD)] as chiral selectors were investigated. These cationogenic selectors, differing in ionization and steric properties, exhibited clear differences in their enantioselectivities.

The differences in enantioresolution observed under identical acid‐base conditions (pH 5.2), providing comparable effective charges/mobilities of the CDs, e.g., excellent separations of single enantiomeric couples (triM‐A‐βCD, M‐A‐βCD), multicomponent mixtures of enantiomers (M‐A‐βCD), and mixtures of positional isomers (M‐A‐βCD, diM‐A‐βCD), indicated the importance of structural parameters (different degrees of methylation) of the studied chiral selectors in the separation mechanism.

The differences in enantioresolution observed under various acid base conditions (pH 5.2 and 9.6), providing significant differences of effective charges/mobilities of CDs, e.g., a dramatic decrease in enantioresolution as well as achiral resolution with uncharged M‐A‐βCD and preserved resolution with permanently charged triM‐A‐βCD, indicated the importance of charge of the studied chiral selectors in the separation mechanism.

The present study clearly showed that the studied CD derivatives have great potential as chiral selectors in capillary zone electrophoresis separations of DNP‐AAs and that their effective use is related to the character of the analyte (structure, hydrophobicity) as well as to working conditions (pH).  相似文献   

12.
A β‐cyclodextrin (β‐CD) bonded phase with diamine‐s‐triazine moiety was prepared. The separation and retention behavior of the isomers of five aromatic carboxylic acids, including toluic acid, aminobenzoic acid, nitrobenzoic acid, hydroxybenzoic acid, and naphthoic acid were investigated by a high‐performance liquid chromatography (HPLC) using the β‐CD bonded phase prepared. The influence of mobile phase pH in the range of 2.7‐3.6 on the retention of these analytes was examined. The isomers of the aromatic carboxylic acids, with the exception of nitrobenzoic acid, were optimally and effectively separated at pH 2.7, while the three isomers of nitrobenzoic acid could be well separated at pH 3.3. Compared with the chromatographic results obtained previously on the amine‐s‐triazine‐β‐CD bonded phase, the retention factors of the isomers of aromatic carboxylic acid on the diamine‐s‐triazine‐β‐CD bonded phase increase to a relatively much greater extent. Thus, the functionality of the spacer arm of the bonded phase playing an important role in the retention of aromatic carboxylic acid isomers is demonstrated. The results also imply that the hydrogen‐bonding interaction and the mechanism of anion exchange sorption as well may contribute significantly to the retention mechanisms.  相似文献   

13.
Three chiral stationary phases were prepared by dynamic coating of sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD) with different degrees of substitution, onto strong anion‐exchange stationary phases. The enantioselective potential and stability of newly prepared chiral stationary phases were examined using a set of structurally different chiral analytes. Measurements were performed in RP‐HPLC. Mobile phases consisted of methanol/formic acid, pH 2.10, and methanol/10 mM ammonium acetate buffer, pH 4.00, in various volume ratios. SBE‐β‐CDs with degrees of substitution (DS) 4, 6.3, and 10 proved suitable for the enantioseparation of 14, 11, and 8 analytes, respectively. The SBE‐β‐CD DS 4 based chiral stationary phase enabled the enantioseparation of the nearly all basic and neutral compounds. Chiral stationary phases with higher sulfobutylether‐β‐cyclodextrin substitution (especially DS 10) yielded higher enantioresolution values for acidic compounds.  相似文献   

14.
A new type of chiral magnetic nanoparticle was prepared from covalently linked magnetic nanoparticles (Fe3O4) and heptakis‐(6‐O‐triisopropylsilyl)‐β‐cyclodextrin (6‐TIPS‐β‐CD). The resulting selectors (TIPS‐β‐CD‐MNPs) combined the good magnetic properties Fe3O4 and efficient chiral recognition ability of 6‐TIPS‐β‐CD. The enantioselectivity of TIPS‐β‐CD‐MNPs towards 1‐(1‐naphthyl)ethylamine was six times higher than that of the parent β‐CD modified Fe3O4 particles.  相似文献   

15.
This work documents the influence of the position of single carboxymethyl group on the β‐cyclodextrin skeleton on the enantioselectivity. These synthesized monosubstituted carboxymethyl cyclodextrin (CD) derivatives, native β‐cyclodextrin, and commercially available carboxymethyl‐β‐cyclodextrin with degree of substitution approximately 3 were used as additives into the BGE consisting of phosphate buffer at 20 mmol/L concentration, pH 2.5, and several biologically significant low‐molecular‐mass chiral compounds were enantioseparated by CE. The results indicate that different substituent location on β‐cyclodextrin skeleton has a significant influence on the enantioseparation of the investigated enantiomers. The enantioselectivity of 2IO‐regioisomer was better than with native β‐cyclodextrin. Comparable results to native β‐cyclodextrin were obtained for 6IO‐ regioisomer and the enantioselectivity of 3IO‐regioisomer was even worse than with native β‐cyclodextrin. Commercially available derivative of CD provides better resolutions than the monosubstituted carboxymethyl CD derivatives for most of the investigated analytes.  相似文献   

16.
The syntheses of well‐defined 7‐arm and 21‐arm poly(N‐isopropylacrylamide) (PNIPAM) star polymers possessing β‐cyclodextrin (β‐CD) cores were achieved via the combination of atom transfer radical polymerization (ATRP) and click reactions. Heptakis(6‐deoxy‐6‐azido)‐β‐cyclodextrin and heptakis[2,3,6‐tri‐O‐(2‐azidopropionyl)]‐β‐cyclodextrin, β‐CD‐(N3)7 and β‐CD‐(N3)21, precursors were prepared and thoroughly characterized by nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. A series of alkynyl terminally functionalized PNIPAM (alkyne‐PNIPAM) linear precursors with varying degrees of polymerization (DP) were synthesized via atom transfer radical polymerization (ATRP) of N‐isopropylacrylamide using propargyl 2‐chloropropionate as the initiator. The subsequent click reactions of alkyne‐PNIPAM with β‐CD‐(N3)7 and β‐CD‐(N3)21 led to the facile preparation of well‐defined 7‐arm and 21‐arm star polymers, namely β‐CD‐(PNIPAM)7 and β‐CD‐(PNIPAM)21. The thermal phase transition behavior of 7‐arm and 21‐arm star polymers with varying molecular weights were examined by temperature‐dependent turbidity and micro‐differential scanning calorimetry, and the results were compared to those of linear PNIPAM precursors. The anchoring of PNIPAM chain terminal to β‐CD cores and high local chain density for star polymers contributed to their considerably lower critical phase separation temperatures (Tc) and enthalpy changes during phase transition as compared with that of linear precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 404–419, 2009  相似文献   

17.
《Electrophoresis》2017,38(8):1188-1200
To optimize chiral separation conditions and to improve the knowledge of enantioseparation, it is important to know the binding constants K between analytes and cyclodextrins and the electrophoretic mobilities of the temporarily formed analyte‐cyclodextrin‐complexes. K values for complexes between eight phenethylamine enantiomers, namely ephedrine, pseudoephedrine, methylephedrine and norephedrine, and four different β‐cyclodextrin derivatives were determined by affinity capillary electrophoresis. The binding constants were calculated from the electrophoretic mobility values of the phenethylamine enantiomers at increasing concentrations of cyclodextrins in running buffer. Three different linear plotting methods (x ‐reciprocal, y ‐reciprocal, double reciprocal) and nonlinear regression were used for the determination of binding constants with β‐cyclodextrin, (2‐hydroxypropyl)‐β‐cyclodextrin, methyl‐β‐cyclodextrin and 6‐O‐α‐maltosyl‐β‐cyclodextrin. The cyclodextrin concentration in a 50 mM phosphate buffer pH 3.0 was varied from 0 to 12 mM. To investigate the influence of the binding constant values on the enantioseparation the observed electrophoretic selectivities were compared with the obtained K values and the calculated enantiomer‐cyclodextrin‐complex mobilities. The different electrophoretic mobilities of the temporarily formed complexes were crucial factors for the migration order and enantioseparation of ephedrine derivatives. To verify the apparent binding constants determined by capillary electrophoresis, a titration process using ephedrine enantiomers and β‐cyclodextrin was carried out. Furthermore, the isothermal titration calorimetry measurements gave information about the thermal properties of the complexes.  相似文献   

18.
A novel cyclodextrin intermediate, mono‐2A‐allylcarbamido‐2A‐deoxy‐permethylated β‐cyclodextrin, was synthesized by reacting allylamine and newly prepared mono‐2A‐azido‐2A‐deoxy‐permethylated β‐cyclodextrin by the Staudinger reaction and anchored onto porous silica beads by a one‐pot hydrosilylation and immobilization procedure to afford a novel chiral stationary phase. This stationary phase acts as a new member of the previous chiral stationary phase series immobilized on the cyclodextrin C2 position. This stationary phase depicted enantiomeric separation abilities toward a series of bicyclic and tricyclic racemates under reversed‐phase conditions. The resolutions for hesperetin and naringenin achieved on the current phase reached 3.91 and 1.11, respectively, much higher than the previous permethylated β‐cyclodextrin with the linkage at the C6 position.  相似文献   

19.
In this study, a new CE method, employing a binary system of trimethyl‐β‐CD (TM‐β‐CD) and a chiral amino acid ester‐based ionic liquid (AAIL), was developed for the chiral separation of seven 2‐arylpropionic acid nonsteroidal anti‐inflammatory drugs (NSAIDs). In particular, the enantioseparation of ibuprofen, ketoprofen, carprofen, indoprofen, flurbiprofen, naproxen, and fenoprofen was improved significantly by supporting the BGE with the chiral AAIL l ‐alanine tert butyl ester lactate (l ‐AlaC4Lac). Parameters, such as concentrations of TM‐β‐CD and l ‐AlaC4Lac, and buffer pH, were systematically examined in order to optimize the chiral separation of each NSAID. It was observed that the addition of the AAIL into the BGE improved both resolution and efficiency significantly. After optimization of separation conditions, baseline separation (Rs>1.5) of five of the analytes was achieved in less than 11 min, while the resolution of ibuprofen and flurbiprofen was approximately 1.2. The optimized enantioseparation conditions for all analytes involve a BGE of 5 mM sodium acetate/acetic acid (pH 5.0), an applied voltage of 30 kV, and a temperature of 20°C. In addition, the results obtained by computing the %‐RSD values of the EOF and the two enantiomer peaks, demonstrated excellent run‐to‐run, batch‐to‐batch, and day‐to‐day reproducibilities.  相似文献   

20.
A well‐defined structure liquid crystal heptakis [6‐deoxy‐6‐(1‐H‐1,2,3‐triazol‐4‐yl)(methyl)6‐(4‐methoxybiphenyl‐4′‐yloxy) hexanoyl]‐β‐cyclodextrin (H6B‐β‐CD) was synthesized from propargyl 6‐(4‐methoxybiphenyl‐4′‐yloxy) hexanoate (P6B) and heptakis (6‐deoxy‐6‐azido)‐β‐cyclodextrin ((N3)7‐β‐CD) by click reaction. The chemical structure of H6B‐β‐CD was confirmed by 1H NMR, FTIR, and MALDI‐TOF MS. The thermal stability of the compound was investigated by thermogravimetric analysis (TGA). The liquid crystalline behavior was studied by differential scanning calorimetry (DSC), polarizing optical microcopy (POM), and wide‐angle X‐ray diffraction (WAXD) measurement. These investigations have shown that the supramolecular structure of H6B‐β‐CD are consisted of a large scale ordered lamellar structure and a small scale ordered structure (SmE) at low temperature region. As the temperature increases, the small scale structure becomes disordered relatively in the first instance, from smectic E to smectic A. Then, the lamellar structure collapses and nematic phase and isotropic phase are observed in sequence. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2838–2845, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号