首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a detailed analysis of the contribution of small-angle Nambu–Goldstone boson (phonon) collisions to the shear viscosity, ηη, in a superfluid atomic Fermi gas close to the unitarity limit. We show that the experimental values of the shear viscosity coefficient to entropy ratio, η/sη/s, obtained at the lowest reached temperature can be reproduced assuming that phonons give the leading contribution to ηη. The phonon contribution is evaluated considering 1↔212 processes and taking into account the finite size of the experimental system. In particular, for very low temperatures, T?0.1TFT?0.1TF, we find that phonons are ballistic and the contribution of phonons to the shear viscosity is determined by the processes that take place at the interface between the superfluid and the normal phase. This result is independent of the detailed form of the phonon dispersion law and leads to two testable predictions: the shear viscosity should correlate with the size of the optical trap and it should decrease with decreasing temperature. For higher temperatures the detailed form of the phonon dispersion law becomes relevant and, within our model, we find that the experimental data for η/sη/s can be reproduced assuming that phonons have an anomalous dispersion law.  相似文献   

2.
We study generalized Dirac oscillators with complex interactions in (1+1)(1+1) dimensions. It is shown that for the choice of interactions considered here, the Dirac Hamiltonians are ηη-pseudo-Hermitian with respect to certain metric operators ηη. Exact solutions for the generalized Dirac oscillator for some choices of the interactions have also been obtained. It is also shown that generalized Dirac oscillators can be identified with an anti-Jaynes–Cummings-type model and by spin flipping they can also be identified with a Jaynes–Cummings-type model.  相似文献   

3.
Even though the one-dimensional (1D) Hubbard model is solvable by the Bethe ansatz, at half-filling its finite-temperature T>0T>0 transport properties remain poorly understood. In this paper we combine that solution with symmetry to show that within that prominent T=0T=0 1D insulator the charge stiffness D(T)D(T) vanishes for T>0T>0 and finite values of the on-site repulsion UU in the thermodynamic limit. This result is exact and clarifies a long-standing open problem. It rules out that at half-filling the model is an ideal conductor in the thermodynamic limit. Whether at finite TT and U>0U>0 it is an ideal insulator or a normal resistor remains an open question. That at half-filling the charge stiffness is finite at U=0U=0 and vanishes for U>0U>0 is found to result from a general transition from a conductor to an insulator or resistor occurring at U=Uc=0U=Uc=0 for all finite temperatures T>0T>0. (At T=0T=0 such a transition is the quantum metal to Mott-Hubbard-insulator transition.) The interplay of the ηη-spin SU(2)SU(2) symmetry with the hidden U(1)U(1) symmetry beyond SO(4)SO(4) is found to play a central role in the unusual finite-temperature charge transport properties of the 1D half-filled Hubbard model.  相似文献   

4.
A complex symplectic structure on a Lie algebra hh is an integrable complex structure JJ with a closed non-degenerate (2,0)(2,0)-form. It is determined by JJ and the real part ΩΩ of the (2,0)(2,0)-form. Suppose that hh is a semi-direct product g?Vg?V, and both gg and VV are Lagrangian with respect to ΩΩ and totally real with respect to JJ. This note shows that g?Vg?V is its own weak mirror image in the sense that the associated differential Gerstenhaber algebras controlling the extended deformations of ΩΩ and JJ are isomorphic.  相似文献   

5.
We demonstrate the emergence of non-Abelian fusion rules for excitations of a two dimensional lattice model built out of Abelian degrees of freedom. It can be considered as an extension of the usual toric code model on a two dimensional lattice augmented with matter fields. It consists of the usual C(Zp)C(Zp) gauge degrees of freedom living on the links together with matter degrees of freedom living on the vertices. The matter part is described by a nn dimensional vector space which we call HnHn. The ZpZp gauge particles act on the vertex particles and thus HnHn can be thought of as a C(Zp)C(Zp) module. An exactly solvable model is built with operators acting in this Hilbert space. The vertex excitations for this model are studied and shown to obey non-Abelian fusion rules. We will show this for specific values of nn and pp, though we believe this feature holds for all n>pn>p. We will see that non-Abelian anyons of the quantum double of C(S3)C(S3) are obtained as part of the vertex excitations of the model with n=6n=6 and p=3p=3. Ising anyons are obtained in the model with n=4n=4 and p=2p=2. The n=3n=3 and p=2p=2 case is also worked out as this is the simplest model exhibiting non-Abelian fusion rules. Another common feature shared by these models is that the ground states have a higher symmetry than ZpZp. This makes them possible candidates for realizing quantum computation.  相似文献   

6.
7.
We discuss three Hamiltonians, each with a central-field part H0H0 and a PT-symmetric perturbation igzigz. When H0H0 is the isotropic Harmonic oscillator the spectrum is real for all gg because HH is isospectral to H0+g2/2H0+g2/2. When H0H0 is the Hydrogen atom then infinitely many eigenvalues are complex for all gg. If the potential in H0H0 is linear in the radial variable rr then the spectrum of HH exhibits real eigenvalues for 0<g<gc0<g<gc and a PT phase transition at gcgc.  相似文献   

8.
A curve αα immersed in the three-dimensional sphere S3S3 is said to be a Bertrand curve if there exists another curve ββ and a one-to-one correspondence between αα and ββ such that both curves have common principal normal geodesics at corresponding points. The curves αα and ββ are said to be a pair of Bertrand curves in S3S3. One of our main results is a sort of theorem for Bertrand curves in S3S3 which formally agrees with the classical one: “Bertrand curves in S3S3 correspond to curves for which there exist two constants λ≠0λ0 and μμ such that λκ+μτ=1λκ+μτ=1”, where κκ and ττ stand for the curvature and torsion of the curve; in particular, general helices in the 3-sphere introduced by M. Barros are Bertrand curves. As an easy application of the main theorem, we characterize helices in S3S3 as the only twisted curves in S3S3 having infinite Bertrand conjugate curves. We also find several relationships between Bertrand curves in S3S3 and (1,3)-Bertrand curves in R4R4.  相似文献   

9.
The spin–orbit interactions (SOI) for the single and double ring-shaped oscillator potentials are studied as an energy correction to the Schrödinger equation. We find that the degeneracy for the energy levels with angular quantum number m=0m=0 keeps invariant in the case of the SOI. The degeneracy is still 2 for single ring-shaped potential and 4 for double ring-shaped potential. However, for the energy levels with angular quantum number m≠0m0 the degeneracy is reduced from original 4 for the single ring-shaped potential and 8 for the double ring-shaped potential to 2. That is, their energy levels in the case of the SOI are split to 2 (single) and 4 (double) sublevels. There exists an accidental degeneracy for the cases |m|=2,3,4,…|m|=2,3,4,. We note that around the critical value b0b0, the energy levels are reversed.   We also discuss some special cases for η=2,3,4,5,6,…η=2,3,4,5,6,, and the b=0,c>0b=0,c>0. It should be pointed out that the parameter b0b0 is relevant for the angular part parameter bb in the single and double ring-shaped potentials and it makes the energy levels changed from positive to negative, but the parameter cc corresponds to the angular part parameter in double ring-shaped potential and the ηη is related to it. This model can be useful for investigations of axial symmetric subjects like the ring-shaped molecules or related problems and may also be easily extended to a many-electron theory.  相似文献   

10.
We have studied the anisotropic two-dimensional nearest-neighbor Ising model with competitive interactions in both uniform longitudinal field HH and transverse magnetic field ΩΩ. Using the effective-field theory (EFT) with correlation in cluster with N=1N=1 spin we calculate the thermodynamic properties as a function of temperature with values HH and ΩΩ fixed. The model consists of ferromagnetic interaction JxJx in the xx direction and antiferromagnetic interaction JyJy in the yy direction, and it is found that for H/Jy∈[0,2]H/Jy[0,2] the system exhibits a second-order phase transition. The thermodynamic properties are obtained for the particular case of λ=Jx/Jy=1λ=Jx/Jy=1 (isotropic square lattice).  相似文献   

11.
We discuss consequences of the models of “tensorial pomeron” and “vectorial pomeron” for exclusive diffractive production of scalar and pseudoscalar mesons in proton–proton collisions. Diffractive production of f0(980)f0(980), f0(1370)f0(1370), f0(1500)f0(1500), ηη, and η(958)η(958) mesons is discussed. Different pomeron–pomeron–meson tensorial coupling structures are possible in general. In most cases two lowest orbital angular momentum–spin couplings are necessary to describe experimental differential distributions. For f0(980)f0(980) and ηη production reggeon–pomeron, pomeron–reggeon, and reggeon–reggeon exchanges are included in addition, which seems to be necessary at relatively low energies. The theoretical results are compared with the WA102 experimental data. Correlations in azimuthal angle between outgoing protons, distributions in rapidities and transverse momenta of outgoing protons and mesons, in a special “glueball filter variable”, as well as some two-dimensional distributions are presented. We discuss differences between results of the vectorial and tensorial pomeron models. We show that high-energy central production, in particular of pseudoscalar mesons, could provide crucial information on the spin structure of the soft pomeron.  相似文献   

12.
We introduce a network evolution process motivated by the network of citations in the scientific literature. In each iteration of the process a node is born and directed links are created from the new node to a set of target nodes already in the network. This set includes mm “ambassador” nodes and ll of each ambassador’s descendants where mm and ll are random variables selected from any choice of distributions plpl and qmqm. The process mimics the tendency of authors to cite varying numbers of papers included in the bibliographies of the other papers they cite. We show that the degree distributions of the networks generated after a large number of iterations are scale-free and derive an expression for the power-law exponent. In a particular case of the model where the number of ambassadors is always the constant mm and the number of selected descendants from each ambassador is the constant ll, the power-law exponent is (2l+1)/l(2l+1)/l. For this example we derive expressions for the degree distribution and clustering coefficient in terms of ll and mm. We conclude that the proposed model can be tuned to have the same power law exponent and clustering coefficient of a broad range of the scale-free distributions that have been studied empirically.  相似文献   

13.
We discuss space-time symmetric Hamiltonian operators of the form H=H0+igHH=H0+igH, where H0H0 is Hermitian and gg real. H0H0 is invariant under the unitary operations of a point group GG while HH is invariant under transformation by elements of a subgroup GG of GG. If GG exhibits irreducible representations of dimension greater than unity, then it is possible that HH has complex eigenvalues for sufficiently small nonzero values of gg. In the particular case that HH is parity-time symmetric then it appears to exhibit real eigenvalues for all 0<g<gc0<g<gc, where gcgc is the exceptional point closest to the origin. Point-group symmetry and perturbation theory enable one to predict whether HH may exhibit real or complex eigenvalues for g>0g>0. We illustrate the main theoretical results and conclusions of this paper by means of two- and three-dimensional Hamiltonians exhibiting a variety of different point-group symmetries.  相似文献   

14.
15.
We develop a variational approximation to the entanglement entropy for scalar ?4?4 theory in 1+11+1, 2+12+1, and 3+13+1 dimensions, and then examine the entanglement entropy as a function of the coupling. We find that in 1+11+1 and 2+12+1 dimensions, the entanglement entropy of ?4?4 theory as a function of coupling is monotonically decreasing and convex. While ?4?4 theory with positive bare coupling in 3+13+1 dimensions is thought to lead to a trivial free theory, we analyze a version of ?4?4 with infinitesimal negative bare coupling, an asymptotically free theory known as precarious  ?4?4 theory, and explore the monotonicity and convexity of its entanglement entropy as a function of coupling. Within the variational approximation, the stability of precarious ?4?4 theory is related to the sign of the first and second derivatives of the entanglement entropy with respect to the coupling.  相似文献   

16.
17.
The effects associated to the length of stabilograms, a measure of the time dependence of the center of pressure of an individual standing up, are analyzed. The fractal characteristics of 27 signals with a length of 214214 points, each one corresponding to a different individual, are studied by using the Detrended Fluctuation Analysis technique. The properties of the complete signals are compared to those of various subsignals extracted from them. No differences have been found between the characteristic exponents found for xx and yy signals. The relation between the exponents of the position and velocity signals is accomplished by the 214214 point signals, while subsignals with up to 212212 points do not verify it. Using artificial signals with 214214 points, generated for αα values given, it has been demonstrated that the exponents obtained from these signals take values larger than expected for α<0.3α<0.3, while the exponents of the accumulated series are smaller than expected for 0.7<α0.7<α. For CoP trajectories this indicates that DFA-1 provides feasible exponents for the short ττ-end region of the velocity signal and the large ττ-end region of the accumulated (position) one. It has been found that the characteristic exponents vary along the series. A slightly larger persistence is found in the last part of the signal for large frequencies in the xx direction.  相似文献   

18.
In this paper we show that for a compact minimal hypersurface MM of constant scalar curvature in the unit sphere S6S6 with the shape operator AA satisfying ‖A‖2>5A2>5, there exists an eigenvalue λ>10λ>10 of the Laplace operator of the hypersurface MM such that ‖A‖2=λ−5A2=λ5. This gives the next discrete value of ‖A‖2A2 greater than 0 and 5.  相似文献   

19.
We analyse the phase diagram of a quantum mean spherical model in terms of the temperature TT, a quantum parameter gg, and the ratio p=−J2/J1p=J2/J1, where J1>0J1>0 refers to ferromagnetic interactions between first-neighbour sites along the dd directions of a hypercubic lattice, and J2<0J2<0 is associated with competing antiferromagnetic interactions between second neighbours along m≤dmd directions. We regain a number of known results for the classical version of this model, including the topology of the critical line in the g=0g=0 space, with a Lifshitz point at p=1/4p=1/4, for d>2d>2, and closed-form expressions for the decay of the pair correlations in one dimension. In the T=0T=0 phase diagram, there is a critical border, gc=gc(p)gc=gc(p) for d≥2d2, with a singularity at the Lifshitz point if d<(m+4)/2d<(m+4)/2. We also establish upper and lower critical dimensions, and analyse the quantum critical behavior in the neighborhood of p=1/4p=1/4.  相似文献   

20.
In [L. Lebtahi, Lie algebra on the transverse bundle of a decreasing family of foliations, J. Geom. Phys. 60 (2010), 122–133], we defined the transverse bundle VkVk to a decreasing family of kk foliations FiFi on a manifold MM. We have shown that there exists a (1,1)(1,1) tensor JJ of VkVk such that Jk≠0Jk0, Jk+1=0Jk+1=0 and we defined by LJ(Vk)LJ(Vk) the Lie Algebra of vector fields XX on VkVk such that, for each vector field YY on VkVk, [X,JY]=J[X,Y][X,JY]=J[X,Y].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号