首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
. Molecular matrix elements of a physical operator are expanded in terms of polycentric matrix elements in the atomic basis by multiplying each by a geometrical factor. The number of terms in the expansion can be minimized by using molecular symmetry. We have shown that irreducible tensor operators can be used to imitate the actual physical operators. The matrix elements of irreducible tensor operators are easily computed by choosing rational irreducible tensor operators and irreducible bases. A set of geometrical factors generated from the expansion of the matrix elements of irreducible tensor operator can be transferred to the expansion of the matrix elements of the physical operator to compute the molecular matrix elements of the physical operator. Two scalar product operators are employed to simulate molecular two-particle operators. Thus two equivalent approaches to generating the geometrical factors are provided, where real irreducible tensor sets with real bases are used. Received: 3 September 1996 / Accepted: 19 December 1996  相似文献   

2.
李代数方法在研究双原子分子、三原子分子振-转光谱及相关问题等方面已被证明是一种有效方法[‘-0,并被成功推广到多原子分子[’-门.构造代数哈密顿量是此方法的关键,这就要求选择合适的  相似文献   

3.
A theory for handling non-orthogonal radial orbitals of two shells of atomic electrons based on the mathematical apparatus of irreducible tensor operators is presented. The general expressions for one- and two-electron operator matrix elements are given.  相似文献   

4.
Relying on our earlier results in the unitary group Racah-Wigner algebra, specifically designed to facilitate quantum chemical calculations of molecular electronic structure, the tensor operator formalism required for an efficient evaluation of one- and two-body matrix elements of molecular electronic Hamiltonians within the spin-adapted Gel'fand-Tsetlin basis is developed. Introducing the second quantization-like creation and annihilation vector operators at the unitary group [U(n)] level, appropriate two-box symmetric and antisymmetric irreducible tensor operators as well as adjoint tensors are defined and their matrix elements evaluated in the electronic Gel'fand-Tsetlin basis as single products of segment values. Using these tensor operators, the matrix elements of one- and two-body components of a general electronic Hamiltonian are found. Explicit expressions for all relevant quantities pertaining to at most two-column irreducible representations that are required in molecular electronic structure calculations are given. Relationships with other approaches and possible future extensions of the formalism to partitioned bases or spin-dependent Hamiltonians are discussed.On leave from: Department of Chemistry, Xiamen University, Xiamen, Fujian, PR China.  相似文献   

5.
In this paper we present a derivation of the U(n) adjoint coupling coefficients for the representations appropriate to many-electron systems. Since the states of a many-fermion system are to comprise the totally antisymmetric Nth rank tensor representation of U(2n), the work of this paper enables the matrix elements of the U(2n) generators to be evaluated directly in the U(n) × U(2) (i.e., spin orbit) basis using their transformation properties as adjoint tensor operators. A connection between the adjoint coupling coefficients, as derived in this paper, and the matrix elements of certain (spin independent) two-body operators is also presented. This indicates that in CI calculations, one may obtain the matrix elements of spin-dependent operators from the known matrix elements of certain spin-independent two-body operators. In particular this implies a segment-level formula for the matrix elements of the U(2n) generators in the spin-orbit basis.  相似文献   

6.
In this paper a general method for the evaluation of the matrix elements of spin-dependent operators is proposed to improve the treatment primitively suggesteed by Cooper and Musher. This approach is largely based on the recent results which the present authors have achieved in the representation theory for the inner- and outer-product reduction of the symmetric group. It is shown that the so-called outer-product coupling coefficients (OPCC ) can be used to generalize the method for constructing the irreducible tensor operators of group Sn. Together with the use of inner-product coupling coefficients (IPCC ), an expression for the matrix elements of spin-dependent operators is presented as the product of a Racah coefficient for Sn and a reduced matrix element which can be expressed in terms of IPCC, OPCC , and the related integrals. The treatment for one- and two-electron spin-dependent operators is discussed in detail.  相似文献   

7.
冯东太  丁世良  王美山 《化学学报》2003,61(11):1729-1733
利用Lie代数方法研究了四原子分子振转相互作用,在代数框架内首次给出四 原子分子振转相互作用的张量算子非对角矩阵元的表达式,利用这些表达式对线型 四原子分子HCCF振转相互作用的l-doubling进行了计算。  相似文献   

8.
SO(4)群链的广义耦合系数和耦合张量算子矩阵元的计算   总被引:1,自引:0,他引:1  
证明了群链(Ⅰ)和(Ⅲ)的广义耦合系数和耦合张量算子矩阵元的一般计算公式,应用该公式计算了Majorana算子矩阵元,从而验证了一般矩阵元公式推导的正确性.  相似文献   

9.
Calculation of blocks of matrix elements between determinants associated with two fixed orbital configurations is very easy. A simple method to obtain the whole blocks and then transform them to the spinadapted basis is described. The method is suitable for many-particle operators, the number of operations to obtain matrix elements being independent of the number of orbitals or electrons. Some applications of the proposed algorithm, and possible extensions to eigenfunctions of ?2 and other operators, are discussed.  相似文献   

10.
A numerical solution, using a truncated matrix diagonalization is presented of the rotation-internal rotation problem of a semirigid molecular model consisting of two equivalent tops with Cs local symmetry. Starting from the classical hamiltonian various aspects of the isometrie group of this system are discussed. The coefficient of the energy matrix are calculated analytically and their asymptotic behavior is derived. Furthermore the selection rules and analytical expressions are given for electric dipole transition matrix elements and polarizability tensor matrix elements.  相似文献   

11.
A new set of generators of the operator algebra over the electronic Fock space is introduced. It is shown that with this set of generators the “basis” Lie algebra can be associated and that the operator algebra of the Fock space is the homomorphic image of the corresponding universal enveloping algebra. The algebraic structure revealed is used for deriving the reduction formulas for the elements of the simplest spin tensor operators between the Gelfand states.  相似文献   

12.
The polarization dependence of the two-photon absorption signal is described directly in terms of the matrix elements of the irreducible representation of the two-photon absorption tensor operator for an ensemble with cylindrical symmetry probed with identical photons of linear polarization. Non vanishing matrix elements are easily determined from the known tensor patterns of the specific two-photon transition. The formalism is applicable to the extraction of alignment parameters for symmetric top molecules as well as diatomics produced in collisions of unpolarized particles or in the photodissociation with a single photon of linear polarization.  相似文献   

13.
N. Nero 《Chemical physics》1984,91(1):89-100
A new method is presented to compute cartesian tensors in the expansion of curvilinear internal coordinates. Second- and higher-order coefficients are related to the metrics of the space of displacements. Components of the metric tensor are taken from existing tables of inverse kinetic energy matrix elements or, when rotations are involved, derived from general invariance conditions of scalars within a molecule. This leads to a tensor formalism particularly convenient in dealing with curvilinear coordinates in anharmonic calculations of vibrational frequencies. Formulae are given for elements of the potential energy matrix, related to quadratic and cubic force constants in terms of Christoffel symbols. The latter quantities are also used in the expansion of redundancy relations, with explicit coefficients given up to the third order.  相似文献   

14.
It is shown that the Heisenberg Lie algebra of the nondegenerate harmonic oscillator leads to a basis {J+, J0, J?} of LASU (2). The Hamiltonian of the system is proportional to J0, and the basis elements give rise to irreducible tensors in the associative enveloping algebra of the Heisenberg Lie algebra. The construction of these irreducible tensors is studied with special attention being paid to the case in which they act upon a single vector space spanned by the harmonic oscillator basis functions. A tensor coupling rule is developed, and useful application is made of it in the calculation of general expressions for vibrational operators and their matrix elements. Throughout, the value of the additional algebraic quantum numbers (l, m) is emphasized.  相似文献   

15.
16.
New quantum-mechanical expressions are obtained for forces between the particles in molecules. A new interpretation of quantum transitions in molecular isomeric structures is proposed in terms of matrix elements of force operators.  相似文献   

17.
Matrix elements of the linearized collision operators that arise in the linearization of the Boltzmann equations for a binary gas system are calculated. The collision operators employed here differ from those usually considered in that the Maxwell—Boltzmann distribution functions which appear are parametrized by two different temperatures, one for each component. The matrix representations of the isotropic portion of the collision operators are calculated with the Sonine polynomials as basis functions, and for the hard sphere cross section, recursion relations for the matrix elements are derived which permit their efficient numerical calculation. The dependene of a few matrix elements on the mass and temperature ratios of the two components is considered. In particular, the disparate mass limit is investigated and the range of validity of the Fokker—Planck operator as an approximation to the collision operator in this limit is briefly discussed.  相似文献   

18.
The spatial symmetries of the harmonic oscillator and the recently found irreducible tensors constructed from the associated annihilation and creation operators are exploited to obtain new expressions for the elements of the matrix representatives of several examples of vibrational operators. Since all vibrational operators are expressible in terms of the irreducible tensors, their matrix elements reflect the angular momentum symmetry inherent in them, for the results derived here are in terms of the Clebsch–Gordan coefficients and the isoscalar factors that arise from the couplinig rule of the irreducible tensors. Familiarity with the mathematical properties of these quantities derived from the elementary theory of angular momentum facilitates the evaluation of many vibrational operators that may be of importance in the study of potentials in this basis. In particular, it is shown that the nonvanishing of matrix elements is governed by a law of conservation of angular momentum along the axis of quantization of the nondegenerate harmonic oscillator. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
The matrix differential calculus is applied for the first time to a quantum chemical problem via new matrix derivations of integral formulas and gradients for Hamiltonian matrix elements in a basis of correlated Gaussian functions. Requisite mathematical background material on Kronecker products, Hadamard products, the vec and vech operators, linear structures, and matrix differential calculus is presented. New matrix forms for the kinetic and potential energy operators are presented. Integrals for overlap, kinetic energy, and potential energy matrix elements are derived in matrix form using matrix calculus. The gradient of the energy functional with respect to the correlated Gaussian exponent matrices is derived. Burdensome summation notation is entirely replaced with a compact matrix notation that is both theoretically and computationally insightful. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
We study a spherical mesoparticle suspended in Newtonian fluid between plane-parallel walls with incident Poiseuille flow. Using a two-dimensional Fourier transform technique we obtain a symmetric analytic expression for the Green tensor for the Stokes equations describing the creeping flow in this geometry. From the matrix elements of the Green tensor with respect to a complete vector harmonic basis, we obtain the friction matrix for the sphere. The calculation of matrix elements of the Green tensor is done in large part analytically, reducing the evaluation of these elements to a one-dimensional numerical integration. The grand resistance and mobility matrices in Cartesian form are given in terms of 13 scalar friction and mobility functions which are expressed in terms of certain matrix elements calculated in the spherical basis. Numerical calculation of these functions is shown to converge well and to agree with earlier numerical calculations based on boundary collocation. For a channel width broad with respect to the particle radius, we show that an approximation defined by a superposition of single-wall functions is reasonably accurate, but that it has large errors for a narrow channel. In the two-wall geometry the friction and mobility functions describing translation-rotation coupling change sign as a function of position between the two walls. By Stokesian dynamics calculations for a polar particle subject to a torque arising from an external field, we show that the translation-rotation coupling induces sideways migration at right angles to the direction of fluid flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号