首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of N-tosylpyrroles or N-tosylindoles with α-unsubstituted α,β-unsaturated carboxylic acids or unsaturated carboxylic acids having an α electron-withdrawing substituent in the presence of TFAA and a Lewis acid catalyst resulted in the formation of fused cyclopentenones via a tandem acylation–Nazarov cyclization sequence, while either the acylation product obtained or no reaction occurred in the absence of the Lewis acid catalyst.  相似文献   

2.
A collection of N-acyl and N-carbamoyl succinimides were prepared by acylation of succinimide with acyl chlorides or by ethylene dichloride (EDC) coupling of carboxylic acids. The x-ray crystal structures of N-benzoyl and N-p-nitrobenzoyl succinimides were determined. The N-acyl succinimides were effective in acylating primary amines, a secondary amine, and an aromatic amine.

Supplemental materials are available for this article. Go to the publisher's online edition of Synthetic Communications® to view the free supplemental file.  相似文献   

3.
Summary: Carboxylic acids were efficiently activated with N,N′‐carbonyldiimidazole (CDI) and applied for the acylation of cellulose under homogeneous conditions using dimethyl sulfoxide (DMSO)/tetrabutylammonium fluoride trihydrate (TBAF) as solvent. The simple and elegant method is a very mild and easily applicable tool for the synthesis of pure aliphatic, alicyclic, bulky, and unsaturated cellulose esters with degrees of substitution of up to 1.9. Products are soluble in organic solvents, e.g., DMSO or N,N‐dimethylformamide (DMF). The cellulose esters were characterized by elemental analysis, FT‐IR, 1H and 13C NMR spectroscopy and show no impurities or substructures resulting from side reactions.

The esterification of cellulose using carboxylic acids activated in situ with N,N′‐carbonyldiimidazole.  相似文献   


4.
TsOH/graphite was found to be an effective catalyst system for the Friedel–Crafts acylation of aromatic compounds with carboxylic acids. Both aliphatic and aromatic carboxylic acids reacted smoothly under TsOH/graphite catalysis to afford the corresponding aromatic ketones in high yields. The graphite was easily recovered by simple extraction and could be reused without decrease of activity in the presence of fresh TsOH.  相似文献   

5.
The kinetics of the homogeneous acylation of microcrystalline cellulose, MCC, with carboxylic acid anhydrides with different acyl chain-length (Nc; ethanoic to hexanoic) in LiCl/N,N-dimethylacetamide have been studied by conductivity measurements from 65 to 85 °C. We have employed cyclohexylmethanol, CHM, and trans-1,2-cyclohexanediol, CHD, as model compounds for the hydroxyl groups of the anhydroglucose unit of cellulose. The ratios of rate constants of acylation of primary (CHM; Prim-OH) and secondary (CHD; Sec-OH) groups have been employed, after correction, in order to split the overall rate constants of the reaction of MCC into contributions from the discrete OH groups. For the model compounds, we have found that k(Prim-OH)/k(Sec-OH) > 1, akin to reactions of cellulose under heterogeneous conditions; this ratio increases as a function of increasing Nc. The overall, and partial rate constants of the acylation of MCC decrease from ethanoic- to butanoic-anhydride and then increase for pentanoic- and hexanoic anhydride, due to subtle changes in- and compensations of the enthalpy and entropy of activation.  相似文献   

6.
Scalable protocols of straightforward synthesis of enantiomeric γ-(acyloxy)carboxylic acids and γ-lactones are presented. The key step is lipase-catalyzed stereoselective acylation of γ-hydroxycarboxylic acid sodium salt in organic solvent followed by acidification of the product, extraction and acidic relactonization of the unreacted enantiomer. The mixture of γ-(acyloxy)carboxylic acid and γ-lactone is separated either by extraction with solution of sodium bicarbonate or by distillation. A switch of enantioinduction of Candida antarctica lipase B along homologous nucleophiles from R configuration of γ-hydroxyhexanoic acid salt to S configuration of the C7 and longer-chain homologues has been disclosed. Both enantiomers of γ-(acyloxy)pentanoic acids; γ-(acetyloxy)octanoic and -nonanoic acids with S configuration; [(1S,5R)-5-(chloroacetyloxy)cyclopent-2-en-1-yl]acetic acid and enantiomeric γ-lactones derived from them were prepared with e. r. >98.5/1.5. The rates of acylation of C5 to C9 homologous salts differ by three orders of magnitude but remain applicable for preparative synthesis by variation of the enzyme loading and reaction time.  相似文献   

7.
 The lipase-catalyzed aminolysis of carboxylic esters is a fairly general reaction that has been performed with a wide range of esters and amines, generally in anhydrous organic media to avoid undesirable hydrolysis of the ester. Alternatively, carboxylic amides can be synthesized by lipase mediated condensation of carboxylic acids and amines if an excess of either reactant is avoided. Chiral carboxylic esters have been resolved by lipase-catalyzed aminolysis. In the majority of these resolutions, Candida antarctica lipase B has been employed as the catalyst. A range of chiral amines has been resolved by lipase mediated acylation, using mainly the lipases from C. antarctica (B type) and Pseudomonas species. The enantiorecognition was frequently found to depend critically on the acylating agent and the reaction medium.  相似文献   

8.
Indoles are ubiquitous structures that are found in natural products and biologically active molecules. The synthesis of indoles and indole‐involved synthetic methodologies in organic chemistry have been receiving considerable attention. Indole‐N‐carboxylic acids and derived indole‐N‐carboxamides are intriguing compounds, which have been widely used in organic synthesis, especially in multicomponent reactions and C?H functionalization of indoles. This Minireview summarizes the advances of reactions involving indole‐N‐carboxylic acids and indole‐N‐carboxamides in organic chemistry, and discusses the synthetic potential and perspective of this field.  相似文献   

9.
Chitin is one of the most abundant and cheaply available biopolymers in Nature. Chitin has become a valuable starting material for many biotechnological products through manipulation of its N‐acetyl functionality, which can be cleaved under mild conditions using the enzyme family of de‐N‐acetylases. However, the chemoselective enzymatic re‐acylation of glucosamine derivatives, which can introduce new stable functionalities into chitin derivatives, is much less explored. Herein we describe an acylase (CmCDA from Cyclobacterium marinum) that catalyzes the N‐acylation of glycosamine with a range of carboxylic acids under physiological reaction conditions. This biocatalyst closes an important gap in allowing the conversion of chitin into complex glycosides, such as C5‐modified sialosides, through the use of highly selective enzyme cascades.  相似文献   

10.
Summary.  The lipase-catalyzed aminolysis of carboxylic esters is a fairly general reaction that has been performed with a wide range of esters and amines, generally in anhydrous organic media to avoid undesirable hydrolysis of the ester. Alternatively, carboxylic amides can be synthesized by lipase mediated condensation of carboxylic acids and amines if an excess of either reactant is avoided. Chiral carboxylic esters have been resolved by lipase-catalyzed aminolysis. In the majority of these resolutions, Candida antarctica lipase B has been employed as the catalyst. A range of chiral amines has been resolved by lipase mediated acylation, using mainly the lipases from C. antarctica (B type) and Pseudomonas species. The enantiorecognition was frequently found to depend critically on the acylating agent and the reaction medium. Received December 20, 1999. Accepted January 1, 2000  相似文献   

11.
Rhodium‐catalyzed C7‐selective decarbonylative arylation, olefination, and methylation of indoles with carboxylic acids or anhydrides by C?H and C?C bond activation have been developed. Furthermore, C7‐acylation products can also be generated selectively at a lower reaction temperature in the developed system. The key to the high reactivity and regioselectivity of this transformation is the appropriate choice of an indole N‐PtBu2 chelation‐assisted group. This method has many advantages, including easy access and removal of the directing group, the use of cheap and widely available coupling agents, no requirement of an external ligand or oxidant, a broad substrate scope, high efficiency, and the formation of a sole regioisomer.  相似文献   

12.
Rhodium‐catalyzed C7‐selective decarbonylative arylation, olefination, and methylation of indoles with carboxylic acids or anhydrides by C?H and C?C bond activation have been developed. Furthermore, C7‐acylation products can also be generated selectively at a lower reaction temperature in the developed system. The key to the high reactivity and regioselectivity of this transformation is the appropriate choice of an indole N‐PtBu2 chelation‐assisted group. This method has many advantages, including easy access and removal of the directing group, the use of cheap and widely available coupling agents, no requirement of an external ligand or oxidant, a broad substrate scope, high efficiency, and the formation of a sole regioisomer.  相似文献   

13.
A simple, efficient, and new method has been developed for the preparation of N,N-dimethylamides from carboxylic acids. As described below, treatment of a variety of aromatic carboxylic acids with N,N-dimethylsulfamoyl imidazole or N,N-dimethylsulfamoyl chloride in the presence of a mixture of methanesulfonic acid/phosphorus pentoxide (2:1, v/w) proceeded effectively to afford the corresponding N,N-dimethylamides in moderate to good yields. This method is easy, rapid, and good yielding for the synthesis of N,N-dimethylamides from carboxylic acids.  相似文献   

14.
The Rh-catalyzed ortho-C(sp2)−H functionalization of 8-aminoquinoline-derived benzamides with aliphatic acyl fluorides generated in situ from the corresponding acids has been developed. This reaction initiated with 8-aminoquinoline-directed ortho-C(sp2)−H acylation, which was accompanied by subsequent intramolecular nucleophilic acyl substitution of amide group to produce alkylidene phthalides This approach exhibits high stereo-selectivity for Z-isomer products, and tolerates a variety of functional groups as well as aliphatic carboxylic acids with diverse structural scaffolds.  相似文献   

15.
N-Boc-protected α-amino acids are synthesized in two steps from linear or branched carboxylic acid feedstocks. In the first step, the carboxylic acid is coupled with tert-butyl aminocarbonate (BocNHOH) to generate azanyl ester (acyloxycarbamate) RCO2NHBoc. In the second step, this azanyl ester undergoes a stereocontrolled iron-catalyzed 1,3-nitrogen migration to generate the N-Boc-protected non-racemic α-amino acid. This straightforward protocol is applicable to the catalytic asymmetric synthesis of α-monosubstituted α-amino acids with aryl, alkenyl, and alkyl side chains. Furthermore, α,α-disubstituted α-amino acids are accessible in an enantioconvergent fashion from racemic carboxylic acids. The new method is also advantageous for the synthesis of α-deuterated α-amino acids. N-Boc-protected α-amino acids synthesized using this two-step protocol are ready-to-use building blocks.  相似文献   

16.
Three derivatization agents used in GC analysis of amino acids were compared: N,O‐bis(trimethylsilyl)trifluoroacetamide, (BSTFA), N‐methyl‐N‐(tert‐butyldimethylsilyl)trifluoroacetamide (MTBSTFA), and isobutyl chloroformate (iBuCF). It was shown that the analytical characteristics achieved in the case of silylation with MTBSTFA are comparable to those obtained for esterification/acylation. However, since the former approach requires laborious sample preparation to isolate the compounds in question prior to derivatization, determination of amino acids as N(O,S)‐alkoxycarbonyl alkyl esters seems to be preferable in many cases. Application of the esterification/acylation procedure to analysis of lyophilized E. coli microbial culture was demonstrated.  相似文献   

17.
3-(Dimethylamino)-2,2-dimethyl-2H,-azirine as an α-Aminoisobutyric-Acid (Aib) Equivalent: Cyclic Depsipeptides via Direct Amid Cyclization In MeCN at room temperature, 3-(dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) and α-hydroxycarboxylic acids react to give diamides of type 8 (Scheme 3). Selective cleavage of the terminal N,N-dimethylcarboxamide group in MeCN/H2O leads to the corresponding carboxylic acids 13 (Scheme 4). In toluene/Ph SH , phenyl thioesters of type 11 are formed (see also Scheme 5). Starting with diamides 8 , the formation of morpholin-2,5- diones 10 has been achieved either by direct amide cyclization via intermediate 1,3-oxazol-5(4H)-ones 9 or via base-catalyzed cyclization of the phenyl thioesters 11 (Scheme 3). Reaction of carboxylic acids with 1 , followed by selective amide hydrolysis, has been used for the construction of peptides from α-hydroxy carboxylic acids and repetitive α-aminoisobutyric-acid (Aib) units (Scheme 4). Cyclization of 14a, 17a , and 20a with HCI in toluene at 100° gave the 9-, 12-, and 15-membered cyclic depsipeptides 15, 18 , and 21 , respectively.  相似文献   

18.
19.
A new approach to the selective comparative metabolite profiling of carboxylic acids in rat urine was established using CE‐MS and a method for positively pre‐charged and 2H‐coded derivatization. Novel derivatizing reagents, N‐alkyl‐4‐aminomethyl‐pyridinum iodide (alkyl=butyl, butyl‐d9 or hexyl), containing quaternary amine and stable‐isotope atoms (deuterium), were introduced for the derivatization of carboxylic acids. CE separation in positive polarity showed high reproducibility (0.99–1.32% RSD of migration time) and eliminated problems with capillary coating known in CE‐MS anion analyses. Essentially complete ionization and increased hydrophobicity after the derivatization also enhanced MS detection sensitivity (e.g. formic acid was detected at 0.5 pg). Simultaneous derivatization of one sample using two structurally similar reagents, N‐butyl‐4‐aminomethyl‐pyridinum iodide (BAMP) and N‐hexyl‐4‐aminomethyl‐pyridinum iodide, provided additional information for recognizing a carboxylic acid in an unknown sample. Moreover, characteristic fragmentation acquired by online CE‐MS/MS allowed for identification and categorization of carboxylic acids. Applying this method on rat urine, we found 59 ions matching the characteristic patterns of carboxylic acids. From these 59, 32 ions were positively identified and confirmed with standards. For comparative analysis, 24 standard carboxylic acids were derivatized by chemically identical but isotopically distinct BAMP and N‐butyl‐d9‐4‐aminomethyl‐pyridinium iodide, and their derivatization limits and linearity ranges were determined. Comparative analysis was also performed on two individual urine samples derivatized with BAMP and N‐butyl‐d9‐4‐aminomethyl‐pyridinium iodide. The metabolite profiling variation between these two samples was clearly visualized.  相似文献   

20.
Host–guest complexation process of 5,17-bis-(N-tolyliminomethyl)-25,27-dipropoxycalix[4]arene with pyridine carboxylic acids by RP HPLC method (mobile phase – MeCN/H2O, 86/14 by volume, LiChrosorb RP 18, UV detector, λ = 254 nm) had been studied. The binding constants and Gibbs free energies of the complexes 5,17-bis(N-tolyliminomethyl)-25,27-dipropoxycalix[4]arene with the pyridine carboxylic acids are within 584 to 1914 M? 1 and ? 15.76 to ? 18.69 kJ/mol, respectively. It was shown by the molecular modelling that the complexes are stabilised by hydrogen bonds between carboxylic groups of the acids and nitrogen atoms of imino groups at the upper rim or oxygen atoms of the hydroxyl groups at the lower rim of the macrocycle. Linear dependence of the binding constants from the acid lipophilicity log P indicates the role of solvophobic interactions during the complexation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号