首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
In this article, the experimental data of excess molar enthalpies HmE and excess molar volumes VmE are presented for a set of 20 binary mixtures comprised of the first four butyl alkanoates (methanoate to butanoate) and five α,ω-dichloroalkanes (1,2-dichloroethane to 1,6-dichlorohexane), obtained at atmospheric pressure and at a temperature of 298.15 K. The results indicate the existence of specific interactions between both kinds of compounds resulting in exothermic processes for most mixtures, except for those containing butyl methanoate which give rise to net endo/exothermic effects. The VmE are positive for mixtures of (butyl esters + 1,2-dichloroethane or 1,3-dichloropropane) and negative for the remaining ones. The change in HmE with the dichloroethane chain length for a same ester is regular although the VmE presents an irregular variation. It can, therefore, be deuced from this that the mixing process involves both effects, exothermic/endothermic and expansion/contraction, simultaneously. The behaviour of the mixtures is interpreted on the basis of the results observed and attributed to different effects taking place among the molecules studied.To improve application of the UNIFAC model using the version of Dang and Tassios, average values were recalculated again for parameters of the ester/chloride interaction, distinguishing, during its application, the functional group of the acid part of the ester. In spite of this, the model does not adequately reproduce the systems’ behaviour.  相似文献   

2.
3.
4.
5.
Relative permittivities of { CH3OH  +  CH3OCH2(CH2OCH2)3CH2OCH3(2,5,8,11,14-pentaoxapentadecane, tegdme)} at temperatures from 283.15 K to 323.15 K and atmospheric pressure, were measured over the whole composition range. Experimental relative permittivities were fitted by a polynomial function in mole fraction. Values of relative permittivity were measured using a HP4284A precision LCR Meter together with the measuring cell HP16452A at 1 MHz. Relative permittivity increments were determined from experimental data and fitted to a variable-degree polynomial function. Different theoretical models were used to predict the permittivity of this mixture. The predictions are better when the volume change on mixing is considered.  相似文献   

6.
A vibrating wire instrument, in which the wire was clamped at both ends, was used to measure the viscosity of {xCO2 + (1  x)CH4} with x = 0.5174 with a combined uncertainty of 0.24 μPa · s (a relative uncertainty of about 0.8 %) at temperatures T between (229 and 348) K and pressures p from (1 to 32) MPa. The corresponding mass density ρ, estimated with the GERG-2008 equation of state, varied from (20 to 600) kg · m−3. The measured viscosities were consistent within combined uncertainties with data obtained previously for this system using entirely different experimental techniques. The new data were compared with three corresponding states-type models frequently used for predicting mixture viscosities: the Extended Corresponding States (ECS) model implemented in REFPROP 9.1; the SUPERTRAPP model implemented in MultiFlash 4.4; and a corresponding states model derived from molecular dynamics simulations of Lennard Jones fluids. The measured viscosities deviated systematically from the predictions of both the ECS and SUPERTRAPP models with a maximum relative deviations of 11 % at (229 K, 600 kg · m−3) and −16 % at (258 K, 470 kg · m−3), respectively. In contrast, the molecular dynamics based corresponding states model, which is predictive for mixtures in that it does not contain any binary interaction parameters, reproduced the density and temperature dependence of the measured viscosities well, with relative deviations of less than 4.2 %.  相似文献   

7.
The (solid + liquid) phase equilibria of the ternary systems (CsBr + LnBr3 + H2O) (Ln = Pr, Nd, Sm) at T = 298.2 K were studied by the isothermal solubility method. The solid phases formed in the systems were determined by the Schreinemakers wet residues technique, and the corresponding phase diagrams were constructed based on the measured data. Each of the phase diagrams, with two invariant points, three univariant curves, and three crystallization regions corresponding to CsBr, Cs2LnBr5·10H2O and LnBr3·nH2O (n = 6, 7), respectively, belongs to the same category. The new solid phase compounds Cs2LnBr5·10H2O are incongruently soluble in water, and they were characterized by chemical analysis, XRD and TG-DTG techniques. The standard molar enthalpies of solution of Cs2PrBr5·10H2O, Cs2NdBr5·10H2O and Cs2SmBr5·10H2O in water were measured to be (52.49 ± 0.48) kJ · mol−1, (49.64 ± 0.49) kJ · mol−1 and (50.17 ± 0.48) kJ · mol−1 by microcalorimetry under the condition of infinite dilution, respectively, and their standard molar enthalpies of formation were determined as being −(4739.7 ± 1.4) kJ · mol−1, −(4728.4 ± 1.4) kJ · mol−1 and −(4724.4 ± 1.4) kJ · mol−1, respectively. The fluorescence excitation and emission spectra of Cs2PrBr5·10H2O, Cs2NdBr5·10H2O and Cs2SmBr5·10H2O were measured. The results show that the upconversion spectra of the three new solid phase compounds all exhibit a peak at 524 nm when excited at 785 nm.  相似文献   

8.
9.
10.
11.
(Liquid + liquid) coexistence curve, turbidity, and isobaric heat capacity per unit volume for the critical solution of {benzonitrile + n-undecane} have been measured. The critical exponents β, ν, γ, and α have been deduced, which were found to be consistent with the theoretic predictions. Meanwhile, the experimental data have also been analyzed to obtain the system-dependent critical amplitudes B, ξ0, χ0, A±, and D corresponding to the difference of the general density variable of two coexisting phases Δρ, the correlation length ξ, the osmotic compressibility χ, the isobaric heat capacity per unit volume CpV−1, and the first term of correction-to-scaling for the isobaric heat capacity per unit volume, which were used to test some universal ratios. It was found that the coexistence curve may be well described by the crossover model proposed by Gutkowski et al. The critical-fluctuation induced contribution to the background heat capacity Bcr was obtained and used to analyze the asymmetric behavior of the diameter of the coexistence curve. The result indicated that the asymmetry of the coexistence curve can be well described by the complete scaling theory proposed by Anisimov et al., and the heat capacity does make a significant contribution to this asymmetric behavior.  相似文献   

12.
Measurements of the critical parameters for {xNH3 + (1 ? x)H2O} with x = (0.9098, 0.7757, 0.6808) were carried out by using a metal-bellows variable volumometer with an optical cell. The expanded uncertainties (k = 2) in temperature, pressure, density, and composition measurements have been estimated to be less than 3.2 mK, 3.2 kPa, 0.3 kg · m?3, and 8.8 · 10?4, respectively. In each mole fraction, the critical temperature Tc was first determined on the basis of the intensity of the critical opalescence. The critical pressure pc and critical density ρc were then determined as the point at which the meniscus disappears on the isotherm at T = Tc. The expanded uncertainties (k = 2) in the present critical parameters have also been estimated. Comparisons of the present values with the literature data as well as the calculated values afforded using the equation of state are also presented.  相似文献   

13.
The halogenoalkyl complexes [Cp(CO)2M{(CH2)nX}] (n = 3–10, 12, M = Fe; n = 5, 6, M = Ru, X = Br, I) react with Ph3CPF6 in dry CH2Cl2 to give the corresponding carbocation complexes [Cp(CO)2M{η2-(CH2CH(CH2)n?2X}]PF6 in high yields. NMR evidence indicates that the metals form metallacyclopropane type structures with the carbocation ligand. The reactions of some of the cationic complexes with NaI, PPh3, Na[Cp(CO)2Fe] and Et3N are discussed. NaI and Na[Cp(CO)2Fe] displace the halogeno-olefin, while PPh3 adds at the β-CHδ+ giving the unstable phosphonium adducts [Cp(CO)2Fe{CH2CH(PPh3)(CH2)n?2X}]PF6 which decompose to the halogeno-olefins and the cationic PPh3 complex [Cp(CO)2Fe(PPh3)]+. Et3N causes allylic deprotonation forming internal olefin complexes of the type [Cp(CO)2Fe{CH2CHCH(CH2)n?3X}]PF6.  相似文献   

14.
The isothermal and isobaric (vapour + liquid) equilibria for (cis-pinane + α-pinene) and (cis-pinane + 1-butanol) measured with an inclined ebulliometer are presented. The experimental results are analysed using the UNIQUAC equation with the temperature-dependence binary parameters with satisfactory results. Experimental vapour pressures of cis-pinane are also included.  相似文献   

15.
The coexistence curves and light scattering data for a critical solution of (benzonitrile + dodecane) have been reported. The critical exponents relating to the difference in density variables of two coexisting phases β, the correlation length ν, and the osmotic compressibility γ have been determined. The experimental results of the coexistence curves have also been analyzed to examine the Wegner correction terms and the behavior of the diameter of the coexistence curves. The data analysis shows that the 3D-Ising behavior is valid in a temperature range close to the critical point. However, in a wide temperature range the exponential values of ν and γ change with the temperature significantly, clearly exhibiting the critical crossover from the 3D-Ising universality class to the classical one.  相似文献   

16.
Measurements of (p, ρ, T) for{xNH3 +  (1   x)H2O} at x =  (1.0000, 0.8374, 0.6005, and 0.2973) and at specified temperatures and pressures in the compressed liquid phase were carried out with a metal-bellows variable volumometer between T =  310 K and T =  400 K at pressures up to 17 MPa. The results cover the high-density region from ρ =  345 kg · m  3 for x =  1.0000 to ρ =  878 kg · m   3for x =  0.2973. The experimental uncertainties at a 95 per cent confidence interval in temperature T, pressure p, density ρ, and mole fraction x were estimated to be less than  ± 11 mK,  ± 2.6 kPa,  ± 2.1 · 10   3. ρ, and  ± 1.8 · 10  3· x, respectively. A detailed comparison of the density values with literature data as well as with an equation of state proposed by Tillner-Roth and Friend is also reported.  相似文献   

17.
The solubilities, densities and refractive indices data for the four ternary systems ethylene glycol + MCl + H2O (M = Na, K, Rb, Cs) at different temperatures were measured, with mass fractions of ethylene glycol in the range of 0 to 1.0. In all cases, the presence of ethylene glycol significantly reduces the solubility of the salts in aqueous solution. The experimental data of density, refractive index and solubility of saturated solutions for these systems were correlated using polynomial equations as a function of the mass fraction of ethylene glycol. On the other hand, the refractive index and density of unsaturated solutions was also determined for the four ternary systems with varied unsaturated salt concentrations. Values for both the properties were correlated with the salt concentrations and proportions of ethylene glycol in the solutions.  相似文献   

18.
19.
Liquid + liquid coexistence, light scattering, and isobaric heat capacity per unit volume for the critical solutions of (benzonitrile + n-nonane) have been measured. The critical exponents relating to the coexistence curve β, the osmotic compressibility γ, the correlation length ν, and the heat capacity α have been deduced and the values are consistent with the 3D-Ising values in the range close to the critical point. The experimental results of the liquid + liquid coexistence were analyzed to examine the Wegner correction terms and the behaviour of the diameter of the coexistence curves. The light scattering data were well described by the crossover model proposed by Anisimov and Sengers, and showed a tendency of monotonic crossover of the critical exponents γ and ν from the 3D-Ising values to the mean-field values as the temperature departures from the critical point. From calorimetric measurements, the amplitude A± and the critical background Bcr of the heat capacity in the critical region have been deduced and some universal ratios are tested.  相似文献   

20.
(Liquid + liquid) coexistence curve, turbidity, and isobaric heat capacity per unit volume for the critical solution of {benzonitrile + n-tetradecane} have been measured. The critical exponents β, ν, γ, and α and system-dependent critical amplitudes B, ξ0, χ0, and A±, corresponding to the difference of the general density variable of two coexisting phases Δρ, the correlation length ξ, the osmotic compressibility χ, and the isobaric heat capacity per unit volume CpV?1, have been deduced and were used to test some universal ratios. The behavior of the diameter of the coexistence curves showed good agreement with the complete scaling theory. The analysis of effective critical exponent βeff, which was well described by the crossover model proposed by Anisimov and Sengers, and effective critical exponent αeff indicated monotonic crossover phenomena from 3D-Ising behavior to mean-field one as the temperature departed from the critical point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号