首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The coexistence curves of a ternary microemulsion system of {water + sodium di(2-ethylhexyl) sulfosuccinate (AOT) + n-decane} with the molar ratio (30.0) of water to AOT have been determined by measurements of refractive index at constant pressure within about 8 K from the critical temperature Tc. The critical exponent β and the critical amplitude B have been deduced from the coexistence curves. The experimental results have been analysed and compared with the system with molar ratio of 40.8 studied previously. It was found that the critical exponents β for both systems were consistent with the 3D-Ising value in a region sufficiently close to the critical temperature. The critical concentration was slightly affected by the molar ratio ω, but the critical temperature significantly was raised as the molar ratio ω was decreased. The volume fraction ϕ was the better choice of the concentration variable than the effective volume fraction ψ and the refractive index n used for constructing the order parameter for both systems.  相似文献   

2.
Coexistence curves of ( T, n), ( T, ϕ), and ( T, Ψ), where n, ϕ, and Ψ are the refractive index, volume fraction and effective volume fraction ψ = ϕ / {ϕ +  [(1   ϕ )ϕc / (1   ϕc )]}, respectively, for ternary microemulsion systems of {water  + n -nonane  +  sodium di(2-ethyl-1-hexyl)sulphosuccinate} have been determined at temperatures within 8.7 K above the critical temperature by measurements of refractive index at constant pressure and a constant molar ratio of water to sodium di(2-ethyl-1-hexyl)sulphosuccinate. The critical exponent β deduced from ( T,n ), ( T, ϕ), and ( T, Ψ) coexistence curves was found consistent with nonmonotonic crossover observed in all aqueous ionic solutions. The values of β deduced from the experimental data in the range of 1 K above Tcwere consistent with the universality class of three-dimensional Ising-like systems. The coexistence curves have been interpreted by a combination of the Wegner expansion and the rectilinear diameter. The present results indicate that the molar mass dependence of critical amplitudes, we proposed recently, is valid for microemulsion systems.  相似文献   

3.
The coexistence curves (T, n), (T, Φ), and (T, Ψ) (n, Φ, and Ψ are the refractive index, volume fraction, and effective volume fraction, respectively) for the ionic liquid microemulsion systems of {polyoxyethylene tert-octylphenyl ether (T-X100) + 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) + cyclohexane} with various molar ratio (ω) of [bmim][BF4] to T-X100 have been determined by measuring refractive indices at a constant pressure in the critical region. The critical temperatures (Tc) and critical volume fraction (Φc) were obtained for the ionic liquid microemulsions. The critical exponents were deduced precisely from the coexistence curves within about 1 K below Tc and the values were consistent with the 3D Ising value.  相似文献   

4.
To examine the critical behavior of the microemulsion, we have determined the coexistence curves for two ternary microemulsion systems of {water + sodium di(2-ethylhexyl) sulfosuccinate (AOT) + n-decane} with the molar ratios ω = (45.2 and 50.0) of water to AOT, respectively, by measuring refractive index at a constant pressure in the critical region. The critical exponent β and the critical amplitude B have been deduced from the coexistence curves. It was found that the values of β for both systems were consistent with the 3D-Ising exponent in a critical region. By increasing ω, i.e. the droplet size, the critical temperature and, to a lesser extent, the critical concentration decrease. The region of coexisting two phases was drastically reduced by an increase in the droplet size.  相似文献   

5.
The liquid–liquid coexistence curves of (dimethyl adipate + n-octane) and (dimethyl adipate + n-nonane) have been determined within about 10 K from the critical temperatures, from which the critical amplitudes and the critical exponents are deduced. The critical exponents corresponding to the coexistence curve β are consistent with the 3D-Ising values. The experimental results have been analyzed to determine Wegner-correction terms and to discuss the asymmetric behaviour of the diameters of the coexistence curves by the complete scaling theory. Molar mass-dependences of the critical amplitude and the critical volume fraction have been shown to be consistent with the theoretical prediction.  相似文献   

6.
The liquid–liquid coexistence curves for (dimethyl adipate + n-hexane), (dimethyl adipate + n-heptane) have been measured, from which the critical amplitudes and the critical exponents are deduced. The critical exponent β corresponding to the coexistence curves are consistent with the 3D-Ising value. The experimental results have also been analyzed to determine the critical amplitudes of Wegner-correction terms when β and Δ are fixed at their theoretical values, and to examine the asymmetry of the diameters for the coexistence curves.  相似文献   

7.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

8.
The thermodynamic properties ofZn5(OH)6(CO3)2 , hydrozincite, have been determined by performing solubility and d.s.c. measurements. The solubility constant in aqueous NaClO4media has been measured at temperatures ranging from 288.15 K to 338.15 K at constant ionic strength (I =  1.00 mol · kg  1). Additionally, the dependence of the solubility constant on the ionic strength has been investigated up to I =  3.00 mol · kg  1NaClO4at T =  298.15 K. The standard molar heat capacity Cp, mofunction fromT =  318.15 K to T =  418.15 K, as well as the heat of decomposition of hydrozincite, have been obtained from d.s.c. measurements. All experimental results have been simultaneously evaluated by means of the optimization routine of ChemSage yielding an internally consistent set of thermodynamic data (T =  298.15 K): solubility constant log * Kps 00 =  (9.0  ±  0.1), standard molar Gibbs energy of formationΔfGmo {Zn5(OH)6(CO3)2 }  =  (  3164.6  ±  3.0)kJ · mol  1, standard molar enthalpy of formation ΔfHmo{Zn5(OH)6(CO3)2 }  =  (  3584  ±  15)kJ · mol  1, standard molar entropy Smo{Zn5(OH)6(CO3)2 }  =  (436  ±  50)J · mol  1· K  1and Cp,mo / (J · mol  1· K  1)  =  (119  ±  11)  +  (0.834  ±  0.033)T / K. A three-dimensional predominance diagram is introduced which allows a comprehensive thermodynamic interpretation of phase relations in(Zn2 +  +  H2O  +  CO2) . The axes of this phase diagram correspond to the potential quantities: temperature, partial pressure of carbon dioxide and pH of the aqueous solution. Moreover, it is shown how the stoichiometric composition{n(CO3) / n(Zn)} of the solid compoundsZnCO3 and Zn5(OH)6(CO3)2can be checked by thermodynamically analysing the measured solubility data.  相似文献   

9.
We have measured the densities of aqueous solutions of l-methionine, l-methionine plus equimolal HCl, and l-methionine plus equimolal NaOH at temperatures 278.15  T/K  368.15, at molalities 0.0125  m/mol · kg−1  1.0 as solubilities allowed, and at p = 0.35 MPa using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15  T/K  393.15 and at the same m and p using a twin fixed-cell differential temperature-scanning calorimeter. We used the densities to calculate apparent molar volumes Vϕ and the heat capacities to calculate apparent molar heat capacities Cp,ϕ for these solutions. We used our results and values from the literature for Vϕ(T, m) and Cp,ϕ(T, m) for HCl(aq), NaOH(aq), and NaCl(aq) and the molar heat capacity change ΔrCp,m(T, m) for ionization of water to calculate parameters for ΔrCp,m(T, m) for the two proton dissociations from protonated aqueous cationic l-methionine. We integrated these results in an iterative algorithm using Young’s Rule to account for the effects of speciation and chemical relaxation on Vϕ(T, m) and Cp,ϕ(T, m). This procedure yielded parameters for Vϕ(T, m) and Cp,ϕ(T, m) for methioninium chloride {H2Met+Cl(aq)} and for sodium methioninate {Na+Met(aq)} which successfully modeled our observed results. Values are given for ΔrCp,m, ΔrHm, pQa, ΔrSm, and ΔrVm for the first and second proton dissociations from protonated aqueous l-methionine as functions of T and m.  相似文献   

10.
In the present work, (liquid + liquid) equilibrium data have been determined experimentally for aqueous two-phase systems formed by the imidazolium ionic liquids of [Cnmim][CH3COO] (n = 4, 6, 8) and inorganic salts of K3PO4, K2HPO4, and K2CO3 at T = 298.15 K. Combined with available data in the literature, the effect of alkyl chain length of cations, type of anions of the ionic liquids, and nature of the inorganic salts were examined on the binodal curves of the systems. Then the binodal curves were fitted to a four-parameter empirical equation, and the tie-lines were described by the Othmer–Tobias and Bancroft equations. In addition, the extraction capacity of the {[Cnmim][CH3COO] (n = 4, 6, 8) + K3PO4} aqueous two-phase systems was evaluated through their application to the extraction of l-tryptophan. The high extraction efficiency suggests that these aqueous two-phase systems are feasible to be used in the extraction and separation process.  相似文献   

11.
We have measured the densities of aqueous solutions of isoleucine, threonine, and equimolal solutions of these two amino acids with HCl and with NaOH at temperatures 278.15  T/K  368.15, at molalities 0.01  m/mol · kg−1  1.0, and at the pressure 0.35 MPa using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15  T/K  393.15 and at the same m and p using a twin fixed-cell differential temperature-scanning calorimeter. We used the densities to calculate apparent molar volumes Vϕ and the heat capacities to calculate apparent molar heat capacities Cp,ϕ for these solutions. We used our results and values from the literature for Vϕ(T, m) and Cp,ϕ(T, m) for HCl(aq), NaOH(aq), and NaCl(aq) and the molar heat capacity change ΔrCp,m(T, m) for ionization of water to calculate parameters for ΔrCp,m(T, m) for the two proton dissociations from each of the protonated aqueous cationic amino acids. We used Young’s Rule and integrated these results iteratively to account for the effects of equilibrium speciation and chemical relaxation on Vϕ(T, m) and Cp,ϕ(T, m). This procedure gave parameters for Vϕ(T, m) and Cp,ϕ(T, m) for threoninium and isoleucinium chloride and for sodium threoninate and isoleucinate which modeled our observed results within experimental uncertainties. We report values for ΔrCp,m, ΔrHm, pQa, ΔrSm, and ΔrVm for the first and second proton dissociations from protonated aqueous threonine and isoleucine as functions of T and m.  相似文献   

12.
We have measured the densities of aqueous solutions of alanine, alanine plus equimolal HCl, and alanine plus equimolal NaOH at temperatures 278.15  T/K  368.15, at molalities 0.0075  m/mol · kg−1  1.0, and at the pressure p = 0.35 MPa using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15  T/K  393.15 and at the same m and p using a twin fixed-cell differential temperature-scanning calorimeter. We used the densities to calculate apparent molar volumes Vϕ and the heat capacities to calculate apparent molar heat capacities Cp,ϕ for these solutions. We used our results and values from the literature for Vϕ(T, m) and Cp,ϕ(T, m) for HCl(aq), NaOH(aq), and NaCl(aq) and the molar heat capacity change ΔrCp,m(T, m) for ionization of water to calculate parameters for ΔrCp,m(T, m) for the two proton dissociations from protonated aqueous cationic alanine. We integrated these results in an iterative algorithm using Young’s Rule to account for the effects of speciation and chemical relaxation on Vϕ(T, m) and Cp,ϕ(T, m). This procedure yielded parameters for Vϕ(T, m) and Cp,ϕ(T, m) for alaninium chloride {H2Ala+Cl(aq)} and for sodium alaninate {Na+Ala(aq)} which successfully modeled our observed results. Values are given for ΔrCp,m, ΔrHm, pQa, ΔrSm, and ΔrVm for the first and second proton dissociations from protonated aqueous alanine as functions of T and m.  相似文献   

13.
The (p, ρ, T) properties and apparent molar volumes Vϕ of CaCl2 in methanol at T = (298.15 to 398.15) K, at pressures up to 40 MPa are reported, and apparent molar volumes have been evaluated. The experimental (p, ρ, T) values were described by an equation of state. The experiments were carried out at m = (0.10819, 0.28529, 0.65879 and 2.39344) mol · kg−1 of calcium chloride.  相似文献   

14.
(Liquid + liquid) equilibrium (LLE) data for the (water + butyric acid + dodecanol) ternary system have been determined experimentally at T = (298.2, 308.2 and 318.2) K. Complete phase diagrams were obtained by determining binodal curves and tie lines. The reliability of the experimental tie lines was confirmed by using the Othmer–Tobias correlation. The UNIFAC method was used to predict the phase equilibrium in the ternary system using the interaction parameters determined from experimental data of CH3, CH2, COOH, OH and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

15.
We have measured the densities of aqueous solutions of serine, serine plus equimolal HCl, and serine plus equimolal NaOH at temperatures 278.15  T/K  368.15, molalities 0.01  m/mol · kg−1  1.0, and at the pressure p = 0.35 MPa, using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15  T/K  393.15 and at the same m and p using a fixed-cell differential temperature-scanning calorimeter. We used the densities to calculate apparent molar volumes Vϕ and the heat capacities to calculate apparent molar heat capacities Cp,ϕ for these solutions. We used our results and values from the literature for Vϕ(T,m) and Cp,ϕ(T,m) for HCl(aq), NaOH(aq), and NaCl(aq) and the molar heat capacity change ΔrCp,m(T,m) for ionization of water to calculate ΔrCp,m(T,m) for proton dissociations from protonated aqueous cationic serine and from the zwitterionic form. We integrated these results in an iterative algorithm using Young’s rule to account for the effects of speciation and chemical relaxation on the observed Vϕ(T,m) and Cp,ϕ(T,m) of the solutions. This procedure yielded parameters for Vϕ(T,m) and Cp,ϕ(T,m) for serinium chloride {H2Ser+Cl(aq)} and for sodium serinate {Na+Gly(aq)} which successfully modeled our observed results. We have then calculated ΔrCp,m, ΔrHm, ΔrVm and pQa for the first and second proton dissociations from protonated aqueous serine as functions of T and m.  相似文献   

16.
Turbidity in the one-phase region and the isobaric heat capacity per unit volume in both one-phase and two-phase regions for the critical solutions of {benzonitrile + n-alkane} were measured, from which the values of the system-dependent critical amplitudes for the correlation length, the osmotic compressibility, the heat capacity and the correction-to-scaling term of the heat capacity were deduced. The previously reported data of the coexistence curves for {benzonitrile + n-alkane} were also reanalyzed with the crossover model to obtain the crossover parameters. Subsequently, these results together with the values of the critical amplitude related to the coexistence curve reported previously were used to calculate some universal critical amplitude ratios, which showed reasonable agreement with the theoretical predictions.  相似文献   

17.
The (liquid + liquid) coexistence curves, the isobaric heat capacities per unit volume and the turbidities for the binary solution of {heavy water + 2,6-dimethylpyridine} have been precisely measured. The values of the critical exponents were obtained, which confirmed the 3D-Ising universality. It was found that the critical temperature dropped by 5.9 K and the critical amplitude of the coexistence curve significantly increased as compared to the binary solution of {water + 2,6-dimethylpyridine}. The complete scaling theory was applied to well describe the asymmetric behavior of the diameter of the coexistence curve as the heat capacity contribution was considered. Moreover, the values of the critical amplitudes of the correlation length and the osmotic compressibility were deduced, which together with the critical amplitudes of the coexistence curve and the heat capacity to test universal amplitude ratios.  相似文献   

18.
The coexistence curves and light scattering data for a critical solution of benzonitrile + octadecane have been reported. The critical exponents relating to the difference in density variables of two coexisting phases β, the correlation length ν, and the osmotic compressibility γ have been calculated. The experimental results of the coexistence curves have also been analyzed to examine the Wegner correction terms and the behavior of the diameter of the coexistence curves. The data analysis shows that the 3D-Ising behavior is valid in a temperature range close to the critical point. However in a wide temperature range the exponential values of ν and γ change with the temperature significantly, clearly exhibiting the critical crossover from the 3D-Ising universality class to the classical one.  相似文献   

19.
Precise excess volumes of mixing measurements at T = 313.15 K are reported over the whole composition range for binary mixtures: (N,N-dimethylacetamide + water), (N,N-dimethylacetamide + methanol), (N,N-dimethylacetamide + ethanol) and for the ternary mixtures (N,N-dimethylacetamide + methanol + water) and (N,N-dimethylacetamide + ethanol + water). For all the systems, large negative deviations from ideality are observed. The binary results have been fitted using the Redlich–Kister type polynomial. The possibility of predicting the ternary results from the binary ones was examined.  相似文献   

20.
(Liquid + liquid) equilibrium (LLE) data for the ternary mixtures of (methanol + aniline + n-octane) and (methanol + aniline + n-dodecane) at T = 298.15 K and ambient pressure are reported. The compositions of liquid phases at equilibrium were determined and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of methanol for the extraction of aniline from the (aniline + n-octane or n-dodecane) mixtures are calculated and compared. Based on these comparisons, the efficiency of methanol for the extraction of aniline from (aniline + n-dodecane) mixtures is higher than that for the extraction of aniline from (aniline + n-octane) mixtures. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. From the phase diagrams and the selectivity factors, it is concluded that methanol may be used as a suitable solvent in extraction of aniline from (aniline + n-octane or n-dodecane) mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号