首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
《Journal of Non》2006,352(38-39):4030-4033
The removal of hydroxyl from silica glass produced by melting quartz powder under an atmosphere containing hydrogen was investigated. After heat-treatment at the temperature range (700–1200 °C) in nitrogen atmosphere, the effective hydrogen diffusion coefficients were evaluated based on the law of nonsteady-state diffusion. The activation energy obtained is 254 kJ mol−1 for the dehydroxylation process in the heat-treatment temperature range of 700–900 °C, and a different activation energy calculated is 32 kJ mol−1 in the temperature range of 900–1200 °C. The activation energies for the dehydroxylation process at the temperature (700–900 °C) and the higher temperature (900–1200 °C) correspond to the binding energy of SiO–H bond and the activation energy for the diffusion of hydrogen in silica glass respectively, which indicate there is a change of mechanism for dehydroxylation with heat-treatment temperature.  相似文献   

2.
《Journal of Non》2007,353(24-25):2383-2391
Thermal stability and crystallization kinetics of the glass 21% MgO, 21.36% Al2O3, 53.32% SiO2 and 4.11% TiO2 (mol%) has been studied using differential thermal analysis (DTA), dilatometry and X-ray diffraction (XRD). Glass in both bulk and frit forms were produced by melting in platinum crucible at 1600 °C for 1–2 h. From variation of DTA peak maximum temperature with heating rate, the activation energies of crystallization were calculated to be 340 kJ mol−1 and 498 kJ mol−1 for first and second crystallization exotherms, respectively. Crystallization of bulk glass was carried out at various temperatures and for different time durations in the range of 850–1000 °C. The influence of the addition of TiO2 on the crystallization sequence of the glass was experimentally determined and discussed.  相似文献   

3.
《Journal of Non》2007,353(22-23):2295-2300
(1  x)Li2O–xNa2O–Al2O3–4SiO2 glasses were studied for the progressive percentage substitution of Na2O for Li2O at the constant mole of Al2O3 and SiO2. The crystallization temperature at the exothermic peak increased from 898 to 939 °C when the Na2O content increases from 0 to 0.6 mol. The coefficient of thermal expansion and density of these as-quenched glasses increase from 6.54 × 10−6 °C−1 to 10.1 × 10−6 °C−1 and 2.378 g cm−3 to 2.533 g cm−3 when the Na2O content increases from 0 to 0.4 mol, respectively. The electrical resistivity has a maximum value at Na2O · (Li2O + Na2O)−1 = 0.4. The activation energy of crystallization decreases from 444 to 284 kJ mol−1 when the Na2O content increased from 0 to 0.4 mol. Moreover, the activation energy increases from 284 kJ mol−1 to 446 kJ mol−1 when the Na2O content increased from 0.4 to 0.6 mol. The FT-IR spectra show that the symmetric stretching mode of the SiO4 tetrahedra (1035–1054 cm−1) and AlO4 octahedra (713–763 cm−1) exhibiting that the network structure is built by SiO4 tetrahedra and AlO4.  相似文献   

4.
《Journal of Non》2005,351(6-7):557-567
The crystal growth kinetics of GeS2 in Ge0.38S0.62 glass has been studied by Differential Scanning Calorimetry (DSC) and microsopy. The linear crystal growth kinetics of both high temperature α-GeS2 and low temperature β-GeS2 polymorphs has been observed over a relatively broad range of temperatures, i.e. 420 < T < 494 °C that correspond to viscosity of supercooled melt: 3 × 109 > η > 8 × 105 Pa s. It seems that 2D nucleated growth is the most probable mechanism of crystallization for high temperature α-GeS2 under these conditions. However, there are significant deviations for this model for the crystallization of low-temperature β-GeS2. This might indicate some changes in crystal-melt interfacial energy or break down of Stokes–Einstein relation in that particular case. At temperatures below 500 °C the temperature range of directly observed crystal growth overlaps with isothermal DSC measurements. In this case overall crystallization kinetics can be described by the Johnson–Mehl–Avrami (JMA) nucleation-growth model for kinetic exponent n  4. The value of activation energy of nucleation estimated from these experiments EN = 434 kJ mol−1 is comparable with the activation energy of viscous flow in supercooled Ge0.38S0.62 melt (Eη = 478 kJ mol−1). A more complex eutectic crystallization involving both GeS2 and GeS phases has been observed at higher temperatures. This process is probably associated with secondary nucleation and cannot be described by a simple JMA model.  相似文献   

5.
A new melting enthalpy ΔHm criterion for the prediction of glass forming ability (GFA) of alloys is proposed and five Zr–Al–Ni–Cu bulk metallic glasses (BMG) with critical dimension Zmax up to ? 7.5 mm are also developed by us in the light of the optimum ΔHm of Zr–Al–Ni–Cu alloy system. And then, we researched the relationships between ΔHm and two GFA parameters (critical cooling rate Rc and Zmax) of five bulk metallic glass (BMG) systems, such as Mg–Ni–Nd, Pd–Cu–Si, La–Al–Ni–Cu, Zr–Al–Ni–Cu and Zr–Ti–Ni–Cu–Be, respectively. The results show that the relationships between ΔHm and Rc are all concave upward parabolas, and the optimum ΔHms for Mg–Ni–Nd, Pd–Cu–Si, Zr–Al–Ni–Cu, Zr–Ti–Ni–Cu–Be and La–Al–Ni–Cu are 10.3960 kJ mol?1, 21.2202 kJ mol?1, 19.7146 kJ mol?1, 18.1455 kJ mol?1 and 13.1558 kJ mol?1, respectively. On the contrary, the relationships between ΔHm and Zmax are all concave downward parabolas, and the optimum ΔHms for Mg–Ni–Nd, Pd–Cu–Si, Zr–Al–Ni–Cu, Zr–Ti–Ni–Cu–Be and La–Al–Ni–Cu are 10.5530 kJ mol?1, 21.0830 kJ mol?1, 19.6603 kJ mol?1, 19.7231 kJ mol?1 and 13.1173 kJ mol?1, respectively. Furthermore, other BMGs’ Rcs or Zmaxs predicted by above-mentioned relationships satisfactorily agree with the tested results, which indicates that these relationships are reliable. However, the predicted results are reliable only if the main components are similar with the fitted BMGs or the additive is sparkle enough that the alloy’s character does not change. On the whole, the ΔHm can act as a criterion for quickly predicting the alloy’s GFA and be helpful for the development of new BMGs.  相似文献   

6.
A novel hydrogel based on poly(sulfopropylmethacrylate) (p(SPM) with different crosslinking degrees was synthesized and characterized. The prepared hydrogels were for the first time, utilized for in situ metal nanoparticle preparation such as Ni, Co, and Cu and employed as a reaction media in catalytic reduction of 4-nitrophenol (4-NP), and 2-nitrophenol (2-NP) to 4-aminophenol and 2-aminophenol, respectively. The experimental parameters that effect reduction rates such as temperature and the amount of catalyst were investigated. The kinetics of the reduction reaction of nitro compounds under different reaction conditions were investigated to determine the activation parameter. Activation energies were found as 33.86 kJ mol? 1 and 24.96 kJ mol? 1 for 4-NP and 2-NP, respectively. It was found that hydrogel–Cu composites can provide 98% activity even at the end of the 7th repetitive usage.  相似文献   

7.
《Journal of Non》2006,352(32-35):3567-3571
The top faces of float glass samples were exposed to vapors resulting from the decomposition of KNO3 at 565 °C for up to 32 h. X-ray dispersive spectra (EDS) show that K+ ions migrate into the glass. The K+ concentration profile was obtained and its diffusion coefficient was calculated by the Boltzmann–Matano technique. The mean diffusion coefficient was approximately 10 × 10−11 cm2 s−1. It was observed that the refractive index and the Vickers hardness decrease with the depth (after the removal of successive layers), and their profiles were thus obtained. These profiles enabled the calculation of the diffusion coefficient of K+ through the Boltzmann–Matano technique, with mean results ranging between 6 × 10−11 and 30 × 10−11 cm2 s−1.  相似文献   

8.
《Journal of Non》2007,353(11-12):1120-1125
We present a study of the electrical properties of silver chalcogenide glasses ‘40AgI’–30Ag2S–30GeS2, 45AgI–27.5Ag2S–27.5GeS2 and 50AgI–25Ag2S–25GeS2 in the 77–400 K temperature and the 20 Hz to 1 MHz frequency ranges. In our temperature range, a large variation of the real permittivity is observed, in relation with an electrodes polarization effect. As the amount of silver iodide increases in the Ag2S–GeS2 matrix, the glass transition temperature and the activation energies decrease, the electrical conductivity increases and reaches 4 Ω−1 m−1 at room temperature for the glass with 50% AgI. The study of the conductivity shows a behavior due to a high ionic conductivity, thermally activated with Edc = 0.21 eV, E1 = 0.075 eV (40AgI–30Ag2S–30GeS2, 45AgI–27.5Ag2S–27.5GeS2), Edc = 0.17 eV, E1 = 0.055 eV for 50AgI–25Ag2S–25GeS2. For these glasses, we have seen three conductivity regimes. The first two terms are thermally activated. The third term cannot be actually clearly identified because either it is thermally activated with a very low activation energy and frequency dependent, or it is almost non-thermally activated and frequency dependent.  相似文献   

9.
《Journal of Non》2007,353(32-40):3314-3317
The ionic conductivity of several chalcogenide glasses increases abruptly with mobile ion addition from values typical of insulating materials (10−16–10−14 Ω−1 cm−1) to values of fast ionic conductors (10−7–10−1 Ω−1 cm−1). This change is produced in a limited concentration range pointing to a percolation process. In a previous work [M. Kawasaki, J. Kawamura, Y. Nakamura, M. Aniya, Solid State Ionics 123 (1999) 259] the transition from semiconductor to fast ionic conductor of Agx(Ge0.25Se0.75)100−x glasses was detected at x1  10 at.% in the form of a steep change in the conductivity. Agx(Ge0.25Se0.75)100−x glasses with x  25 at.%, prepared by a melt quenching method, are investigated by impedance spectroscopy in the frequency range 5 Hz–2 MHz at different temperatures, T, from room temperature to 363 K and by DC measurements at room temperature. The conductivity of the glasses, σ, was obtained as a function of silver concentration and temperature. For x  10 at.% our results are in agreement with those reported by Kawasaki et al. [M. Kawasaki, J. Kawamura, Y. Nakamura, M. Aniya, Solid State Ionics 123 (1999) 259]. The percolation transition was observed in the range 7  x  8. The temperature dependence of the ionic conductivity follows an Arrhenius type equation σ = (σo/T) · exp(−Eσ/kT). The activation energy of the ionic conductivity, Eσ, and the pre-exponential term, σo, are calculated. The results are discussed in connection with other chalcogenide and chalcohalide systems and linked with the glass structures.  相似文献   

10.
《Journal of Non》2007,353(18-21):1951-1955
A study of the Nd3+  Yb3 energy transfer processes in transparent oxyfluoride glass ceramics has been carried out as a function of temperature in the 100–700 K range. This host is a two-phase optical material that consists of a low-phonon energy fluoride nanocrystalline phase embedded in a predominantly aluminosilicate glassy medium and has shown to be an interesting matrix for rare earth ions. Luminescence decay curves of single Nd3+ and Yb3+ doped and co-doped samples at different temperatures have been analyzed in order to calculate the energy transfer and backtransfer rates between these ions. Finally, the results have been also investigated to known the phonons involved in the energy transfer processes, concluding at the end that the Nd3+  Yb3+ energy transfer rate takes place by the emission of three phonons with energy around 325 cm−1 and in the other hand, Nd3+  Yb3+ energy transfer rate has been found to be non-negligible for temperatures over 370 K with the requirement of absorption of phonons.  相似文献   

11.
A study was undertaken to assess the efficiency of precursors' usage during deposition of cadmium telluride (CdTe) layers via atmospheric pressure metal organic chemical vapour deposition (AP-MOCVD) for thin film photovoltaic solar cells. Precursors were released from a showerhead assembly normal to the glass substrate 0.7 mm thick (5×7.5 cm2) being deposited which was kept stationary or moved under the showerhead assembly, with speed of upto 2.25 cm/min. In order to estimate the effective precursor utilisation, the weight deposit (layer) was compared against the theoretical values calculated for ideal molar supply. The layer thickness, composition, morphology, and crystallinity were also measured using profilometry, energy dispersive X-ray (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. It is shown that over 40% material utilisation can be achieved depending on the deposition parameters of substrate temperature and speed, partial pressure of precursors and total gas flow. The activation energy derived from an Arrhenius plot of deposition rate equals 49 kJ mol?1 and is consistent with previous reports of MOCVD CdTe using a horizontal reactor. This confirms that, despite the very different reactor geometry, the alkyl radical homolysis and reaction mechanism applies in the case of the inline injector geometry in the work presented here. These results demonstrate an alternative path to high throughput processing of CdTe thin film solar cells by inline AP-MOCVD.  相似文献   

12.
D. Singh  S. Kumar  R. Thangaraj 《Journal of Non》2012,358(20):2826-2834
Optical and electrical properties of the (Se80Te20)100 ? xAgx (0  x  4) ultra-thin films have been studied. The ultra-thin films were prepared by thermal evaporation of the bulk samples. Thin films were annealed below glass transition temperature (328 K) and in between glass transition temperature and crystallization temperature (343 K). Thin films annealed at 343 K showed crystallization peaks for Se–Te–Ag phases in the XRD spectra. The transmission and reflection of as-prepared and annealed ultra-thin films were obtained in the 300–1100 nm spectral region. The optical band gap has been calculated from the transmission and reflection data. The refractive index has been calculated by the measured reflection data. It has been found that the optical band gap increases, but the refractive index, extinction coefficient, real and imaginary dielectric constant decrease with increase in Ag content. The optical band gap and refractive index show the variation in their values with increase in the annealing temperature. The extinction coefficient increases with increasing annealing temperature. The surface morphology of ultra-thin films has been determined using a scanning electron microscope (SEM). The measured dc conductivity, under a vacuum of 10? 5 mbar, showed thermally activated conduction with single activation energy in the measured temperature range (288–358 K) and it followed Meyer–Neldel rule. The dc activation energy decreases with increase in Ag content in pristine and annealed films. The results have been analyzed on the bases of thermal annealing effects in the chalcogenide thin films.  相似文献   

13.
《Journal of Crystal Growth》2003,247(3-4):613-622
The equilibrated grain boundary groove shapes for the commercial purity succinonitrile (SCN) and succinonitrile–carbon tetrabromide (CTB) eutectic system were directly observed. From the observed grain boundary groove shapes, the Gibbs–Thomson coefficients for the solid SCN–liquid SCN and solid SCN–liquid SCN CTB have been determined to be (5.43±0.27)×10−8 Km and (5.56±0.28)×10−8 Km, respectively, with numerical method. The solid–liquid interface energies for the solid SCN–liquid SCN and solid SCN–liquid SCN CTB have been obtained to be (7.86±0.79)×10−3 J m−2 and (8.80±0.88)×10−3 J m−2, respectively from the Gibbs–Thomson equation. The grain boundary energies in the SCN and SCN rich phase of the SCN–CTB system have been calculated to be (15.03±1.95)×10−3 J m−2 and (16.51±2.15)×10−3 J m−2, respectively, from the observed grain boundary groove shapes. The thermal conductivity ratios of the liquid phase to the solid phase for SCN and SCN–4 mol% CTB alloy have also been measured.  相似文献   

14.
Ca-chloroapatite (CaApCl), glass-bonded CaApCl compositions loaded with 16–32 wt.% simulated pyrochemical chloride waste were prepared by mixing and heating (773–1023 K) apatite and borosilicate glass (BSG) forming reagents in appropriate ratios. The compositions were characterized by XRD, TGA/DTA, SEM, and EDAX. Among the products, 16–27 wt.% chloride waste loaded composition yielded phase pure Ca-chloroapatite and were resistant to leaching of Cl? and other ions. In case of 28–32 wt.% waste loaded compositions, even though formation of phase pure Ca-Chloroapatites was observed by XRD, the leaching of Cl? and other ions was found to be significant. Bulk thermal expansion behavior of the samples was studied by dilatometry. The 16 wt.% chloride waste loaded matrix showed nearly the same thermal expansion compared to pure Ca-Chloroapatites. The % linear thermal expansion of the matrices decrease on increasing the chloride waste loading; however, Ca-chloroapatite mixed with 20 wt.% BSG mixed matrix showed slightly higher thermal expansion. The coefficient of thermal expansion of borosilicate glass is the lowest among all the matrices measured. The coefficient of thermal expansion (CTE) is found to be 12.76 ± 0.64 × 10? 6 K? 1 for CaApl and 12.18 ± 0.63 × 10? 6 K? 1 for 16 wt.% waste loaded BSG-encapsulated CaApl in the temperature range of 298–780 K. The glass transition temperature of the waste loaded matrices is lower than that of the bare BSG and 20 wt.% BSG encapsulated Ca-chloroapatite.  相似文献   

15.
Measurements of the metastable zone and solubility for flunixin meglumine–ethanol system were obtained. The solubility was measured within the temperature range from 288.15 to 328.15 K. The mole fraction solubility was correlated satisfactorily with the temperature by the equation: xeq=2.35×10?12e0.07121T. The value of enthalpy of dissolution, enthalpy of fusion and enthalpy of mixing were determined to be 49.04, 64.03 and ?14.99 kJ mol?1 respectively. The metastable zone width of flunixin meglumine was measured by an electric conductivity method. A comparison of the nucleation temperatures from electric conductivity measurement and from focused beam reflectance measurement (FBRM) shows that both detection techniques give almost the same results for flunixin meglumine. The nucleation parameters of flunixin meglumine in ethanol were determined from the metastable zone data. Over the equilibrium temperature range from 312.28 to 325.55 K, the nucleation rate constant was varied from 0.00001 to 0.00120 #/m2 min, whereas the nucleation order was varied from 2.23022 to 3.39299. The obtained high values of nucleation order indicated a high rate of nucleation.  相似文献   

16.
17.
The presence of minor elements on the crystallization kinetics of iron-rich glass obtained from a Ni–Cu–Co mining waste has been investigated. Two glasses named WG2 and RG were melted at 1500 °C. WG2 was prepared by using the mining waste, whereas RG contains pure oxides and no minor elements. WG2 and RG glasses presented high tendency toward crystallization with KH coefficients of 0.21 and 0.29, respectively. Due to the presence of minor elements WG2 crystallizes at lower temperatures than RG glass leading to an increase in the viscosity. Crystallization kinetics analyzed by different models gives activation energy values close to 500 and 400 kJ·mol? 1 for WG2 and RG, respectively. The Avrami parameter, n, depends on the particle size used for measurement and indicates the high tendency toward surface crystallization for both glasses.  相似文献   

18.
Volume and enthalpy relaxation studies of amorphous Se have been performed in the glass transition region by mercury dilatometry and differential scanning calorimetry. For simple temperature jump experiments, as well as for more complex thermal history the volume and enthalpy relaxation data can be described by a single set of kinetic parameters for Tool-Naraynaswamy-Moynihan (TNM) model [Δh1/R = 42.8 kK, ln(ATNM/s) = ?133]. Slightly different non-linearity and non-exponentiality parameter were found for volume [x = 0.42, β = 0.58] and enthalpy [x = 0.52, β = 0.65] relaxation data. Similar results were obtained also for Adam-Gibbs-Scherer (AGS) model. The activation energy of viscous flow in the glass transition range is identical with the effective activation energy for relaxation process. A self-consistent data evaluation shows that at moderate departure from equilibrium, volume and enthalpy in amorphous selenium relax in the same way as expressed by TNM and AGS models. Both volume and enthalpy change can be interpreted within the same fictive temperature concept.  相似文献   

19.
《Journal of Non》2007,353(5-7):526-529
Formation and destruction of silicon hydride (Si–H) groups in silica by F2 laser irradiation and their vacuum ultraviolet (VUV) optical absorption was examined by infrared (IR) and VUV spectroscopy. Photoinduced creation of Si–H groups in H2-impregnated oxygen deficient silica is accompanied by a growth of infrared absorption band at 2250 cm−1 and by a strong increase of VUV transmission at 7.9 eV. Photolysis of Si–H groups by 7.9 eV photons in this glass was not detected when the irradiation was performed at temperature 80 K. However, a slight destruction of Si–H groups under 7.9 eV irradiation was observed at the room temperature. This finding gives a tentative estimate of VUV absorption cross section of Si–H groups at 7.9 eV as 4 × 10−21 cm2, showing that Si–H groups do not strongly contribute to the absorption at the VUV fundamental absorption edge of silica glass.  相似文献   

20.
《Journal of Non》2005,351(6-7):515-522
Cooling down from the equilibrium state at different rates reveals the dynamic behavior of glass forming materials. In particular, the dependence of the glass transition region on the cooling rate, q is commonly agreed to contain information regarding the activation energy of the relaxation time, τ. In this work experimental and theoretical aspects of such a relationship have been highlighted. Experimentally, the glass transition zone of amorphous polystyrene films has been investigated over two decades of cooling rate (0.5–50 K/min) by using refractive index measurements. The shift of the glass transition temperature and the broadening of the transition zone at increased cooling rate have been characterized. Theoretically, the cooling experiments have been simulated within the integral formulation of the Kovacs–Aklonis–Hutchinson–Ramos (KAHR) model using the Vogel temperature dependence for the relaxation time. The Frenkel–Kobeko–Reiner equation, τq = constant, provided the needed relationship between the experiments and the theory, enabling the evaluation of the relevant parameter of the kinetic model, i.e. the Vogel activation energy and the zero configurational entropy temperature, from the shift of the glass transition temperature with cooling rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号