首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
离子液体型表面活性剂研究   总被引:2,自引:0,他引:2  
易封萍  李积宗  陈斌 《化学学报》2008,66(2):239-244
以1-甲基咪唑为原料, 制备了6个常规离子液体: 1-正丁基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[bmim][BF4]及[bmim][PF6])、1-正己基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[hmim][BF4]及[hmim][PF6])、1-正十六烷基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[C16mim][BF4]及[C16mim][PF6])和4个功能化离子液体: 1-(2-羟乙基)-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[2-hemim][BF4]及[2-hemim][PF6])、1-乙氧羰基甲基-3-甲基咪唑四氟硼酸盐及六氟磷酸盐(简称[eocmmim][BF4]及[eocmmim][PF6]). 研究了这两类离子液体的一些物理性能, 旨在挖掘离子液体在香料香精化妆品工业中的应用价值. 分别检测了它们与一般溶剂的互溶性, 并测定了它们的表面张力和发泡性能, 实验结果表明, 仅[C16mim][BF4]和[C16mim][PF6]具有发泡性能, 发泡力分别为68和120 mm.  相似文献   

2.
A functional composite of single‐walled carbon nanotubes (SWNTs) with hematin, a water‐insoluble porphyrin, was first prepared in 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid. The novel composite in ionic liquid was characterized by scanning electron microscopy, ultraviolet absorption spectroscopy, and electrochemical impedance spectroscopy, and showed a pair of direct redox peaks of the FeIII/FeII couple. The composite–[BMIM][PF6]‐modified glassy carbon electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA) in neutral media due to the synergic effect among SWNTs, [BMIM][PF6], and porphyrin, which led to a highly sensitive and stable amperometric biosensor for TCA with a linear range from 9.0×10?7 to 1.4×10?4 M . The detection limit was 3.8×10?7 M at a signal‐to‐noise ratio of 3. The TCA biosensor had good analytical performance, such as rapid response, good reproducibility, and acceptable accuracy, and could be successfully used for the detection of residual TCA in polluted water. The functional composite in ionic liquid provides a facile way to not only obtain the direct electrochemistry of water‐insoluble porphyrin, but also construct novel biosensors for monitoring analytes in real environmental samples.  相似文献   

3.
This article represents a step towards how to choose an ionic liquid as the solvent to improve metal ion (Ag+ and Pb2+) extraction. The liquid-liquid solvent extraction is proposed with the following imidazolium ionic liquids (ILs): 1-ethyl-3-ethylimidazolium, or 1-butyl-3-ethylimidazolium, or 1-hexyl-3-ethylimidazolium bis{(trifluoromethyl)sylfonyl}imide [EEIM][NTf2], or [BEIM][NTf2], or [HEIM][NTf2], or 1-butyl-3-ethylimidazolium hexafluorophosphate [BEIM][PF6], or 1-hexyl-3-ethylimidazolium hexafluorophosphate [HEIM][PF6] and the popular 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] for comparison. The effect of anion type (NTf2 versus PF6) and the effect of structural components of an ionic liquid including alkyl chain length at the cation and the ethyl substituent instead methyl at the cation, on the extraction and re-extraction processes by using dithizone as a metal chelator, were studied at 296 K. Dithizone was employed to form neutral metal-dithizone complexes with heavy metal ions to extract them from aqueous solution into the ILs. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users. Presented at the 236th ACS National Meeting, August 17–21, Philadelphia, USA.  相似文献   

4.
The room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] has various applications in the separation of a range of metal ions replacing volatile and toxic traditional organic solvents in liquid–liquid extraction systems. In this study, the RTIL [C4mim][PF6] was used to separate no-carrier-added (NCA) 109Cd from α-particle irradiated Ag target. A natural Ag foil was bombarded by 30 MeV α-particles to produce 109Cd. After the decay of all co-produced short-lived products, NCA 109Cd was separated from the bulk Ag using [C4mim][PF6] as extractant from HNO3 medium. Ammoniumpyrrolidine dithiocarbamate (APDC) was used as a complexing agent. At the optimum condition, 3 M HNO3, 0.01 M APDC in presence of [C4mim][PF6], ~99 % bulk Ag was extracted to the IL phase, leaving NCA 109Cd in the aqueous phase. The amount of Ag became negligibly small after re-extraction in the same condition. The ionic liquid was recovered by washing it with 1 M HCl.  相似文献   

5.
X-ray diffraction measurements for the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF4], mixed with CO2 were carried out at high pressures using our developed polymer cell. The intermolecular distribution functions obtained for [BMIM][BF4]–CO2 mixtures showed that CO2 molecules are preferentially solvated to the [BF4] anion. The similar preferential solvation was previously observed in analogous 1-btuyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], with a different anion, which is in harmony with the present results in [BMIM][BF4]–CO2.  相似文献   

6.
《Fluid Phase Equilibria》2006,242(2):147-153
Isobaric vapor–liquid equilibrium (VLE) data for ethanol–water systems containing ionic liquids (ILs) 1-methyl-3-methylimidazolium dimethylphosphate ([MMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), 1-butyl-3-methylimidazolium bromide ([BMIM][Br]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) at atmospheric pressure (101.32 kPa) were measured with a circulation still. The results showed that the VLE of ethanol–water systems in the presence of different ILs was obviously different from that of the IL-free system. All ILs studied showed a salting-out effect, which gave rise to a change of the relative volatility of ethanol, and even to an elimination of the azeotropic point. It was found that the salting-out effect followed the order of [BMIM][Cl] > [BMIM][Br] > [BMIM][PF6] and [MMIM][DMP] > [EMIM][DEP], which was ascribed to the preferential solvation ability of the ions resulting from the dissociation of the IL.  相似文献   

7.
Considering the ionic nature of ionic liquids (ILs), ionic association is expected to be essential in solutions of ILs and to have an important influence on their applications. Although numerous studies have been reported for the ionic association behavior of ILs in solution, quantitative results are quite scarce. Herein, the conductivities of the ILs [Cnmim]Br (n=4, 6, 8, 10, 12), [C4mim][BF4], and [C4mim][PF6] in various molecular solvents (water, methanol, 1‐propanol, 1‐pentanol, acetonitrile, and acetone) are determined at 298.15 K as a function of IL concentration. The conductance data are analyzed by the Lee–Wheaton conductivity equation in terms of the ionic association constant (KA) and the limiting molar conductance (Λm0). Combined with the values for the Br? anion reported in the literature, the limiting molar conductivities and the transference numbers of the cations and [BF4]? and [PF6]? anions are calculated in the molecular solvents. It is shown that the alkyl chain length of the cations and type of anion affect the ionic association constants and limiting molar conductivities of the ILs. For a given anion (Br?), the Λm0 values decrease with increasing alkyl chain length of the cations in all the molecular solvents, whereas the KA values of the ILs decrease in organic solvents but increase in water as the alkyl chain length of the cations increases. For the [C4mim]+ cation, the limiting molar conductivities of the ILs decrease in the order Br?>[BF4]?>[PF6]?, and their ionic association constants follow the order [BF4]?>[PF6]?>Br? in water, acetone, and acetonitrile. Furthermore, and similar to the classical electrolytes, a linear relationship is observed between ln KA of the ILs and the reciprocal of the dielectric constants of the molecular solvents. The ILs are solvated to a different extent by the molecular solvents, and ionic association is affected significantly by ionic solvation. This information is expected to be useful for the modulation of the IL conductance by the alkyl chain length of the cations, type of anion, and physical properties of the molecular solvents.  相似文献   

8.
9.
The determination of triazine herbicides by ultrasonic‐assisted ionic liquid microextraction coupled with high‐performance liquid chromatography was described. 1‐Hexyl‐3‐methylimidazolium hexafluorophosphate ([C6MIm][PF6]) was used as the extraction solvent and some extraction parameters, including volume of [C6MIm][PF6], extraction temperature and time, salt concentration and pH values of sample solution, were examined and optimized. The isolation of the target compounds from the matrix was found to be efficient when triazines in 10 mL of sample solution was extracted with 100 µL of [C6MIm][PF6] for 40 min at 50°C. The detection limits for the triazine range from 0.36 to 1.41 µg·L?1. The satisfactory recoveries (82.3% –120.3%) with relative standard deviations ≦10.1% were obtained for the four triazine herbicides from six kinds of practical water samples.  相似文献   

10.
The density, viscosity and conductivity of ionic liquids (ILs), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]), 1-octyl-3-methylimidazolium chloride ([omim][Cl]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim] BF4]), 1-hexyl- 3-methylimidazolium chloride ([hmim][Cl]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]), and the [omim][BF4] + [omim][Cl], [hmim][BF4] + [hmim][Cl], and [hmim][PF6] + [hmim][Cl] binary mixtures were studied at dif- ferent temperatures. It was demonstrated that the densities of both the neat ILs and their mixtures varied linearly with temper- ature. The density sensitivity of a binary mixture is between those of the two components. The excess molar volumes (VE) of [hmim][BF4] + [hmim][Cl] and [hmim][PF6] + [hmim][Cl] mixtures are positive in the whole composition range. For [omim][BF4] + [omim][Cl], the VE is also positive in the [omim][Cl]-rich region, but is negative in the [omim][BF4]-rich re- gion. The viscosity or conductivity of a mixture is in the intermediate of those of the two neat ILs. For all the neat ILs and the binary mixtures studied, the order of conductivity is opposite to that of the viscosity. The Vogel-Tammann-Fulcher (VTF) equations can be used to fit the viscosity and conductivity of all the neat ILs and the binary mixtures. The neat ILs and their mixtures obey the Fractional Walden Rule very well, and the values of the Walden slopes are all smaller than unit, indicating obvious ion associations in the neat ILs and the binary mixtures.  相似文献   

11.
The three-component reaction of 4-hydroxy-6-methylpyran-2(2H)-one with cyanoacetic acid derivatives and carbonyl compounds in EtOH or in the ionic liquid, viz., 1-butyl-3-methylimidazolinium hexafluorophosphate ([bmim][PF6]), affords substituted 2-amino-7-methyl-5-oxo-4,5-dihydropyrano[4,3-b]pyrans. The yield of substituted pyrano[4,3-b]pyrans in [bmim][PF6] is by 10—14% higher than that in EtOH.  相似文献   

12.
Room temperature ionic liquids (RTIL) are molten salts that are liquids at room temperature. Their liquid state makes them possible candidates as solvents in countercurrent chromatography (CCC), which uses solvents as both the mobile and stationary phases. The study focuses on 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6), an easy to synthesize and purify RTIL whose melting point is –8°C. It is shown that BMIM PF6 behaves like a solvent of significant polarity (comparable with that of ethanol). The ternary phase diagram water–acetonitrile–BMIM PF6 is given, because it was necessary to add acetonitrile to reduce the ionic liquid viscosity. The 40:20:40% w/w water–acetonitrile–BMIM PF6 biphasic liquid system was found to be appropriate as a biphasic liquid system for CCC. Different aromatic solutes, including bases, acids, and neutral compounds, were injected into the CCC column to estimate their distribution constants between the ionic liquid-rich phase and the aqueous phase. The resulting Kil/w constants were compared with the corresponding literature octanol–water partition coefficients, Ko/w. The important drawbacks in the use of RTIL in CCC are clearly pointed out: high viscosity producing pressure build-up, UV absorbance limiting the use of the convenient UV detector, and non-volatility precluding the use of the evaporative light-scattering detector for continuous detection.  相似文献   

13.
The ionic conductivity of the solutions formed from 1-n-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) or 1-n-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) and different molecular solvents (MSs) were measured at 298.15 K. The molar conductivity of the ionic liquids (ILs) increased dramatically with increasing concentration of the MSs. It was found that the molar conductivity of the IL in the solutions studied in this work could be well correlated by the molar conductivity of the neat ILs and the dielectric constant and molar volume of the MSs.  相似文献   

14.
The hydrophobic ionic liquid of [BMIM][PF6] was successfully used for the ultrasound‐assisted extraction of hydrophobic magnolol and honokiol from cortex Magnoliae officinalis. To obtain the best extraction efficiencies, some ultrasonic parameters including the concentration of [BMIM][PF6], pH, ultrasonic power and ultrasonic time were evaluated. The results obtained indicated that the [BMIM][PF6]‐based ultrasound‐assisted extraction efficiencies of magnolol and honokiol were greater than those of the [BMIM][BF4]‐based ultrasound‐assisted extraction (from 48.6 to 45.9%) and the traditional ethanol reflux extraction (from 16.2 to 13.3%). Furthermore, the proposed extraction method is validated by the recovery, correlation coefficient (R2) and reproducibility (RSD, n=5), which were 90.8–102.6, 0.9992–0.9998, and 1.6–5.4%, respectively.  相似文献   

15.
In this paper we have reported the solvent and rotational relaxation of 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6]) confined in tween 20/([bmim][PF6]/water microemulsion using coumarin 153 (C-153) as probe. The most interesting feature of our experiment was that we observed an increase in solvent relaxation time with increase in R (R = tween 20-to-[bmim][PF6] molar ratio). This is due to the fact that with increase in [bmim][PF6] content of the microemulsions, the microviscosity of the pool of the microemulsions increases, and motion of ions of [bmim][PF6] is hindered in the pool of microemulsions. Since motion of ions is responsible for solvation in room-temperature ionic liquids (RTILs), solvent-relaxation time increases with increase in R.  相似文献   

16.
We demonstrate a facile efficient way to fabricate activated carbon nanosheets (ACNSs) consisting of hierarchical porous carbon materials. Simply heating banana leaves with K2CO3 produce ACNSs having a unique combination of macro-, meso- and micropores with a high specific surface area of ∼1459 m2 g−1. The effects of different electrolytes on the electrochemical supercapacitor performance and stability of the ACNSs are tested using a two-electrode system. The specific capacitance (Csp) values are 55, 114, and 190 F g−1 in aqueous 0.5 M sodium sulfate, organic 1 M tetraethylammonium tetrafluoroborate in acetonitrile, and pure ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) electrolytes, respectively. The ACNSs also shows the largest potential window of 3.0 V, the highest specific energy (59 Wh kg−1) and specific power (750 W kg−1) in [BMIM][PF6]. A mini-prototype device is prepared to demonstrate the practicality of the ACNSs.  相似文献   

17.
A new carbon ionic liquid electrode (CILE) has been constructed using a low melting point (39?°C) hydrophobic ionic liquid (IL) 1-propyl-3-methylimidazolium hexafluorophosphate ([Pmim][PF6]) as the binder. Both cyclic voltammetry and electrochemical impedance spectroscopy demonstrate that, in addition to the composition optimization of the IL/graphite composite, heating the composite at a temperature a little higher than the melting point of [Pmim][PF6] can also lower the background current and enhance the mechanical strength of the CILE. The heated CILE is more sensitive than the traditional carbon paste electrode for the detection of H2O2. Glucose oxidase (GOx) can be easily entrapped in the bulk IL/graphite composite. Heating the GOx-modified CILE (GOx-CILE) at the melting point of [Pmim][PF6] does not lower the catalytic activity of GOx. As compared with n-octylpyridinium hexafluorophosphate (melting point 65?°C) as the binder, [Pmim][PF6]-based CILE is much better in signal-to-noise ratio. Under the optimum conditions, the [Pmim][PF6]-based GOx-CILE has a linear amperometric response to glucose over a concentration range of 2.0–26?mM with the detection limit as low as 0.39?mM. It follows that choosing an IL with a melting point of ca. 40?°C as a binder to fabricate enzyme-entrapped CILEs is a good strategy for the enhancement of the performance of the electrode.  相似文献   

18.
Hirayama N  Deguchi M  Kawasumi H  Honjo T 《Talanta》2005,65(1):255-260
Possible use of room temperature ionic liquids (RTILs) as chelate extraction solvent was evaluated by using 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF6]). These RTILs showed high extraction performance for divalent metal cations with 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (Htta). The extracted metals were back-extracted into 1 mol dm−3 nitric acid quantitatively. Furthermore, the extracted species were estimated as neutral hydrated complexes M(tta)2(H2O)n (n= 1 or 2) for M = Ni, Cu and Pb and anionic complexes M(tta)3 for M = Mn, Co, Zn and Cd.  相似文献   

19.
An apparatus used to measure vapor pressure of organic solvents was set up, and vapor pressure of mixture of ionic liquids ([BMIM][PF6] and [BMIM][BF4]) and aromatic compounds (benzene and thiophene), with mole fraction of organic solute from 0.1 to 0.75 was measured by using saturation vapor pressure method at temperature from 303 K to 343 K. Then NRTL equation was used to correlate the experimental data. The overall average relative deviation of activity coefficients for the whole system is 2.30%, which indicates that NTRL equation can be utilized to correlate vapor pressure of binary systems containing ionic liquids. The results show that ionic liquids can depress the volatility of aromatic compounds.  相似文献   

20.
Room temperature ionic liquids (RTILs) have been used as novel solvents to replace traditional volatile organic solvents in organic synthesis, solvent extraction, and electrochemistry. The hydrophobic character and water immiscibility of certain ionic liquids allow their use in solvent extraction of hydrophobic compounds. In this work, a typical room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6], was used as an alternative solvent to study liquid/liquid extraction of heavy metal ions. Dithizone was employed as a metal chelator to form neutral metal-dithizone complexes with heavy metal ions to extract metal ions from aqueous solution into [C4mim][PF6]. This extraction is possible due to the high distribution ratios of the metal complexes between [C4mim][PF6] and aqueous phase. Since the distribution ratios of metal dithiozonates between [C4mim][PF6] and aqueous phase are strongly pH dependent, the extraction efficiencies of metal complexes can be manipulated by tailoring the pH value of the extraction system. Hence, the extraction, separation, and preconcentraction of heavy metal ions with the biphasic system of [C4mim][PF6] and aqueous phase can be achieved by controlling the pH value of the extraction system. Preliminary results indicate that the use of [C4mim][PF6] as an alternate solvent to replace traditional organic solvents in liquid/liquid extraction of heavy metal ions is very promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号