首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Bruggi  Matteo  Corigliano  Alberto 《Meccanica》2019,54(13):2001-2027

A systematic investigation is presented that explores band gap properties of periodic micro-structures architected for maximum auxeticity. The design of two-dimensional auxetic cells is addressed using inverse homogenization. A non-convex optimization problem is formulated that is solved through mathematical programming. Different starting guesses are used to explore local minima when distributing material and void or two materials and void. The same numerical tool succeeds in capturing re-entrant, chiral and anti-chiral layouts with negative Poisson’s ratio, retrieving solutions originally found through other approaches as well as generating variations. A Floquet–Bloch approach is then applied to the achieved periodic cells to investigate possible band gaps characterizing the in-plane wave propagation. Directional and full band-pass filters are found in the case of micro-structures whose auxetic behavior comes from the arising of a rotational deformation of the periodic cell. Such kind of topologies could be exploited to design tunable wave guides and tunable phononic crystals, respectively.

  相似文献   

2.
We compute Pareto fronts that estimate the upper bounds of the bulk modulus and fluid permeability cross-property space for periodic porous materials over a range of porosities. The fronts are generated numerically using topology optimization, which is a systematic, free-form design algorithm for optimizing material layouts. The presented microstructures demonstrate the trade-off between the bulk modulus and fluid permeability achievable with a multifunctional porous material and will be useful for designers of materials for which both stiffness and permeability are important. Our results suggest that the range of achievable stiffness and permeability properties is significantly restricted when considering elastic isotropy, as compared to cubic elastic symmetry. The estimated bounds are of practical importance given the lack of microstructure-independent theoretical cross-property bounds.  相似文献   

3.
The classical asymptotic homogenization approach for linear elastic composites with discontinuous material properties is considered as a starting point. The sharp length scale separation between the fine periodic structure and the whole material formally leads to anisotropic elastic-type balance equations on the coarse scale, where the arising fourth rank operator is to be computed solving single periodic cell problems on the fine scale. After revisiting the derivation of the problem, which here explicitly points out how the discontinuity in the individual constituents’ elastic coefficients translates into stress jump interface conditions for the cell problems, we prove that the gradient of the cell problem solution is minor symmetric and that its cell average is zero. This property holds for perfect interfaces only (i.e., when the elastic displacement is continuous across the composite’s interface) and can be used to assess the accuracy of the computed numerical solutions. These facts are further exploited, together with the individual constituents’ elastic coefficients and the specific form of the cell problems, to prove a theorem that characterizes the fourth rank operator appearing in the coarse-scale elastic-type balance equations as a composite material effective elasticity tensor. We both recover known facts, such as minor and major symmetries and positive definiteness, and establish new facts concerning the Voigt and Reuss bounds. The latter are shown for the first time without assuming any equivalence between coarse and fine-scale energies (Hill’s condition), which, in contrast to the case of representative volume elements, does not identically hold in the context of asymptotic homogenization. We conclude with instructive three-dimensional numerical simulations of a soft elastic matrix with an embedded cubic stiffer inclusion to show the profile of the physically relevant elastic moduli (Young’s and shear moduli) and Poisson’s ratio at increasing (up to 100 %) inclusion’s volume fraction, thus providing a proxy for the design of artificial elastic composites.  相似文献   

4.
The objective of this work is to develop an analytical homogenization method to estimate the effective mechanical properties of fluid-filled porous media with periodic microstructure. The method is based on the equivalent inclusion concept of homogenization applied earlier for solid–solid mixture. It is assumed that porous media are described by the poroelastic constitutive law developed by Biot where porosity is a material parameter. By solving the governing equations of poroelasticity in Fourier transformed domain, the relation between periodic strain and eigenstrain in porous media is established. This relation is subsequently used in an average consistency condition involving both solid and fluid phase stresses and strains. The geometry of the porous microstructure is captured in the g-integral. This homogenization method can also be applied to estimate the equivalent properties of solid–fluid mixture where a pure solid and fluid can be modeled by assuming very low and high porosity, respectively. Several examples are considered to establish this new method by comparing with other existing analytical and numerical methods of homogenization. As an application, poroelastic properties of cortical bone fibril are estimated and compared with previously computed values.  相似文献   

5.
Here homogenization theory is used to establish a connection between the symmetries of a periodic elastic structure associated with the microscopic properties of an elastic material and the material symmetries of the effective, macroscopic elasticity tensor. Previous results of this type exist but here more general symmetries on the microscale are considered. Using an explicit example, we show that it is possible for a material to be fully anisotropic on the microscale and yet the symmetry group on the macroscale can contain elements other than plus or minus the identity. Another example demonstrates that not all material symmetries of the macroscopic elastic tensor are generated by symmetries of the periodic elastic structure.  相似文献   

6.
The specific good properties of cellular materials and composite materials, such as low density and high permeability, make the optimal design of such materials necessary and attractive. However, the given materials for the structures may not be optimal or suitable, since the boundary condition and applied loads vary in practical applications; hence the macro-structure and its material micro-structure should be considered simultaneously. Although abundant studies have been reported on the structural and material optimization at each level, very few of them considered the mutual coordination on both scales. In this paper, two FE models are built for the macro-structure and the micro-structure, respectively; and the effective elastic properties of the periodic micro-structure are blended into the analysis of macro-structure by the homogenization theory. Here, a topological optimum is obtained by gradually re-distributing the constituents within the micro-structure and updating the topological shape at the macro-structure until converges are achieved on both scales. The mutual coordination between the roles of micro-scale and macro-scale is considered. Some numerical examples are presented, which illustrate that the proposed optimization algorithm is effective and highly efficient for the micro-structure design and macro-structure optimization. For the composite design, one can see reasonable effects of the stiffness of base materials on the resultant topologies.  相似文献   

7.
微观结构对复合材料的宏观力学性能具有至关重要的影响, 通过合理设计复合材料微观结构可以得到期望的宏观性能. 均质化方法作为一种有效的设计方法, 它从微观结构的角度出发, 利用均匀化的概念, 实现了对复合材料宏观力学性能的预测和设计. 而当考虑非线性因素, 均质化的实现就非常困难. 本文利用双渐近展开方法, 将位移按照宏观位移和微观位移展开, 推导了非线性弹性均质化方程. 通过直接迭代法, 对非线性弹性均质化方程进行了求解, 并给出了具体的迭代方法和实现步骤. 本文基于迭代步骤和非线性弹性均质化方程编写MATLAB 程序, 对3种典型本构关系的周期性多孔材料平面问题进行了计算, 对比细致模型的应变能、最大位移和等效泊松比, 对程序及迭代方法的准确性进行了验证. 之后对一种三元橡胶基复合材料进行多尺度均质化, 将其分为芯丝尺度和层间尺度. 用线弹性的均质化方法得到了芯丝尺度的等效弹性参数, 并将其作为层间尺度的材料参数. 在层间尺度应用非线性弹性均质化方法对结构进行计算, 得到材料的宏观等效性能, 并以实验结果为基准进行评价.   相似文献   

8.
This paper discusses evaluation of influence of microscopic uncertainty on a homogenized macroscopic elastic property of an inhomogeneous material. In order to analyze the influence, the perturbation-based homogenization method is used. A higher order perturbation-based analysis method for investigating stochastic characteristics of a homogenized elastic tensor and an equivalent elastic property of a composite material is formulated.As a numerical example, macroscopic stochastic characteristics such as an expected value or variance, which is caused by microscopic uncertainty in material properties, of a homogenized elastic tensor and homogenized equivalent elastic property of unidirectional fiber reinforced plastic are investigated. The macroscopic stochastic variation caused by microscopic uncertainty in component materials such as Young’s modulus or Poisson’s ratio variation is evaluated using the perturbation-based homogenization method. The numerical results are compared with the results of the Monte-Carlo simulation, validity, effectiveness and a limitation of the perturbation-based homogenization method is investigated. With comparing the results using the first-order perturbation-based method, effectiveness of a higher order perturbation is also investigated.  相似文献   

9.
在传统双向渐进结构优化(BESO)方法基础上,充分考虑材料和结构的尺度关联性,基于均匀化理论将材料微结构胞元设计和宏观结构拓扑优化相结合,按照材料属性排序引入材料插值函数依次进行灵敏分析,建立周期性多相材料微结构布局及宏观结构拓扑并发优化设计方法。优化过程中,宏观结构受力的特性嵌入微观敏度生成过程,使得新型材料具备了特定宏观结构力学需求的更加轻型、高强的最佳力学性能;同时,微观材料胞元的等效材料属性又是宏观结构优化的基础材料,从而使得材料/结构具有尺度上的统一。相关算例说明该方法在解决多相材料微观分布优化和周期性多相材料微结构布局及宏观结构拓扑并发优化问题时具有边界清晰和收敛快等优点。  相似文献   

10.
复合材料周期性线弹性微结构的拓扑优化设计   总被引:16,自引:4,他引:16  
提出复合材料周期性线弹性微结构拓扑优化设计的模型,模型1设计具有极值弹性特性的复合材料,模型2设计工况最刚微结构单胞。通过该模型和均匀化技术可以获得优化的微结构单胞,进而改善或者得到最优宏观特性的复合材料。为了便于制造和应用,用胞体材料而不是多相材料来得到复合材料的极值弹性特性和最大刚度。优化结果表明,该模型与数值方法相结合可以有效地实现微结构的拓扑优化设计。  相似文献   

11.
This paper studies the influence of heat conduction in both structural and material designs in two dimensions. The former attempts to find the optimal structures with the maximum stiffness and minimum resistance to heat dissipation and the latter to tailor composite materials with effective thermal conductivity and bulk modulus attaining their upper limits like Hashin–Shtrikman and Lurie–Cherkaev bounds. In the part of structural topology optimization of this paper solid material and void are considered respectively. While in the part of material design, two-phase ill-ordered base materials (i.e. one has a higher Young’s modulus, but lower thermal conductivity while another has a lower Young’s modulus but higher conductivity) are assumed in order to observe competition in the phase distribution defined by stiffness and conduction. The effective properties are derived from the homogenization method with periodic boundary conditions within a representative element (base cell). All the issues are transformed to the minimization problems subject to volume and symmetry constraints mathematically and solved by the method of moving asymptote (MMA), which is guided by the sensitivities with respect to the design variables. To regularize the problem the SIMP model is explored with the nonlinear diffusion techniques to create edge-preserving and checkerboard-free results. The illustrative examples show how to generate Pareto fronts by means of linear weighting functions, which provide an in-depth understanding how these objectives compete in the topologies.  相似文献   

12.
A rigorous method for the homogenization of general elastoplastic periodic lattices is presented. A discrete unit cell problem with finite number of degrees of freedom is solved for the determination of the overall elastic stiffness and ultimate strength of the lattice. Both static and kinematic methods are developed. It is shown that the overall yield strength domain of a large specimen, subjected to the so-called kinematically uniform boundary conditions, is asymptotically equal to the homogenized yield strength domain, as the size of the specimen goes to infinity. The method is applied to metallic honeycomb materials with arbitrary non-uniform cell wall thickness. New results concerning non-symmetric material distribution in the cell edges of the honeycomb are obtained. The model shows that the effects of this type of defect on the overall properties are less important than the already known effects of symmetric non-uniform cell wall thickness. Good agreement is observed between the proposed analytical beam model predictions and the finite element computations.  相似文献   

13.
In this paper, we propose a micromechanical analysis of damage and related inelastic deformation in saturated porous quasi brittle materials. The materials are weakened by randomly distributed microcracks and saturated by interstitial fluid with drained and undrained conditions. The emphasis is put on the closed cracks under compression-dominated stresses. The material damage is related to the frictional sliding on crack surface and described by a local scalar variable. The effective properties of the materials are determined using a linear homogenization approach, based on the extension of Eshelby’s inclusion solution to penny shaped cracks. The inelastic behavior induced by microcracks is described in the framework of the irreversible thermodynamics. As an original contribution, the potential energy of the saturated materials weakened by closed frictional microcracks is determined and formulated as a sum of an elastic part and a plastic part, the latter entirely induced by frictional sliding of microcracks. The influence of fluid pressure is accounted for in the friction criterion through the concept of local effective stress at microcracks. We show that the Biot’s effective stress controls the evolution of total strain while the local Terzaghi’s effective stress controls the evolution of plastic strain. Further, the frictional sliding between crack lips generates volumetric dilatancy and reduction in fluid pressure. Applications of the proposed model to typical brittle rocks are presented with comparisons between numerical results and experimental data in both drained and undrained triaxial tests.  相似文献   

14.
The present paper develops and implements finite element formulation for the asymptotic homogenization theory for periodic composite plate and shell structures, earlier developed in  and , and thus adopts this analytical method for the analysis of periodic inhomogeneous plates and shells with more complicated periodic microstructures. It provides a benchmark test platform for evaluating various methods such as representative volume approaches to calculate effective properties. Furthermore, the new numerical implementation (Cheng et al., 2013) of asymptotic homogenization method of 2D and 3D materials with periodic microstructure is shown to be directly applicable to predict effective properties of periodic plates without any complicated mathematical derivation. The new numerical implementation is based on the rigorous mathematical foundation of the asymptotic homogenization method, and also simplicity similar to the representative volume method. It can be applied easily using commercial software as a black box. Different kinds of elements and modeling techniques available in commercial software can be used to discretize the unit cell. Several numerical examples are given to demonstrate the validity of the proposed methods.  相似文献   

15.
多相材料微结构多目标拓扑优化设计   总被引:5,自引:3,他引:5  
孙士平  张卫红 《力学学报》2006,38(5):633-638
在采用多尺度均匀化方法求解微结构等效特性的基础上,提出了多相材料 微结构的多目标优化设计模型. 以组分材料用量为约束,采用周长控制消除棋盘格,结合有 限元方法和对偶凸规划求解技术,对两相和三相材料微结构多项等效模量的组合进行了优化 设计. 研究比较了微结构网格粗细、材料组分以及三相材料微结构优化中的两相实体材料弹 性模量相对比例不同对优化结果的影响. 数值算例验证了优化模型和优化算法的有效性,表 明了相关因素对优化结果的影响.  相似文献   

16.
The objective of this article is to derive a macroscopic Darcy’s law for a fluid-saturated moving porous medium whose matrix is composed of two solid phases which are not in direct contact with each other (weakly coupled solid phases). An example of this composite medium is the case of a solid matrix, unfrozen water, and an ice matrix within the pore space. The macroscopic equations for this type of saturated porous material are obtained using two-space homogenization techniques from microscopic periodic structures. The pore size is assumed to be small compared to the macroscopic scale under consideration. At the microscopic scale the two weakly coupled solids are described by the linear elastic equations, and the fluid by the linearized Navier–Stokes equations with appropriate boundary conditions at the solid–fluid interfaces. The derived Darcy’s law contains three permeability tensors whose properties are analyzed. Also, a formal relation with a previous macroscopic fluid flow equation obtained using a phenomenological approach is given. Moreover, a constructive proof of the existence of the three permeability tensors allows for their explicit computation employing finite elements or analogous numerical procedures.  相似文献   

17.
This paper is devoted to a micromechanical study of mechanical properties of cement-based materials by taking into account effects of water saturation degree and carbonation process. To this end, the cement-based materials are considered as a composite material constituted with a cement matrix and aggregates (inclusions). Further, the cement matrix is seen as a porous medium with a solid phase (CSH) and pores. Using a two-step homogenization procedure, a closed-form micromechanical model is first formulated to describe the basic mechanical behavior of materials. This model is then extended to partially saturated materials in order to account for the effects of water saturation degree on the mechanical properties. Finally, considering the solid phase change and porosity variation related to the carbonation process, the micromechanical model is coupled with the chemical reaction and is able to describe the consequences of carbonation on the macroscopic mechanical properties of material. Some comparisons between numerical results and experimental data are presented.  相似文献   

18.
In this study, creeping and inertial incompressible fluid flows through three-dimensional porous media are considered, and an analytical–numerical approach is employed to calculate the associated permeability and apparent permeability. The multiscale homogenization method for periodic structures is applied to the Stokes and Navier–Stokes equations (aided by a control-volume type argument in the latter case), to derive the appropriate cell problems and effective properties. Numerical solutions are then obtained through Galerkin finite-element formulations. The implementations are validated, and results are presented for flows through cubic lattices of cylinders, and through the dendritic zone found at the solid–liquid interface during solidification of metals. For the interdendritic flow problem, a geometric configuration for the periodic cell is built by the approximate matching of experimental and numerical results for the creeping-flow problem; inertial effects are then quantified upon solution of the inertial-flow problem. Finally, the functional behavior of the apparent permeability results is analyzed in the light of existing macroscopic seepage laws. The findings contribute to the (numerical) verification of the validity of such laws.  相似文献   

19.
In this study, a homogenization theory for non-linear time-dependent materials is rebuilt for periodic elastic-viscoplastic materials with misaligned internal structures, by employing a unit cell defined for the aligned structure as an analysis domain. For this, it is shown that the perturbed velocity fields in such materials possess periodicity in the directions of misaligned unit cell arrangement. This periodicity is used as a novel boundary condition for unit cell analysis to rebuild the homogenization theory. The resulting theory is able to deal with arbitrary misalignment using the same unit cell, avoiding not only geometry and mesh generation of a unit cell for every misalignment, but also the influence of mesh dependence. To verify the theory, an elastic-viscoplastic analysis of plain-woven glass fiber/epoxy laminates with misaligned internal structures is performed. It is shown that the misalignment of internal structures affects viscoplastic properties of the plain-woven laminates both macroscopically and microscopically.  相似文献   

20.
In this paper we present the homogenization of a periodic multilayered pressurized tube made of very dissimilar elastoplastic materials. We focus on some aspects of technological importance, such as the effective properties, the behavior of the homogenized displacements and stresses, the discontinuities of hoop and longitudinal stresses, the homogenization-induced anisotropy. We conclude that the problem needs to be reformulated in order to be stable by homogenization and we define the effective elastic and incremental stress corrector matrices for the incremental stress–total strain matrix law. Finally, we present the numerical simulation for both the non-homogeneous and the homogenized material and two numerical examples confirming the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号