首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A partially prevaporized spray burner was developed to investigate the interaction between fuel droplets and a flame. Monodispersed partially prevaporized ethanol sprays with narrow diameter distribution were generated by the condensation method using rapid pressure reduction of a saturated ethanol vapor–air mixture. A tilted flat flame was stabilized at the nozzle exit using a hot wire. Particle tracking velocimetry (PTV) was applied to measurements of the droplet velocity; the laminar burning velocity was obtained from gas velocity derived from the droplet velocity. Observations were made of flames in partially prevaporized spray streams with mean droplet diameters of 7 μm and the liquid equivalence ratios of 0.2; the total equivalence ratio was varied. In all cases, a sharp vaporization plane was observed in front of the blue flame. Flame oscillation was observed on the fuel-rich side. At strain rates under 50 s−1, the change in the burning velocity with the strain rate is small in fuel-lean spray streams. In spray streams of 0.7 and 0.8 in the total equivalence ratio, burning velocity increases with strain rates of greater than 50 s−1. However, in spray streams with 0.9 and 1.0 in the total equivalence ratio, burning velocity decreases as the strain rate increases. At strain rates greater than 80 s−1, burning velocity decreases with an increased gas equivalence ratio. The effect of mean droplet diameter, and the entry length of droplets into a flame on the laminar burning velocity, were also investigated to interpret the effect of the strain rate on the laminar burning velocity of partially prevaporized sprays.  相似文献   

2.
To avoid the complexities associated with the droplet/vapor transport and nonuniform evaporation processes, a fundamental investigation of liquid fuel combustion in idealized configurations is very useful. An experimental–computational investigation of prevaporized n-heptane nonpremixed and partially premixed flames established in a counterflow burner is described. There is a general agreement between various facets of our nonpremixed flame measurements and the literature data. The partially premixed flames are characterized by a double flame structure. This becomes more distinct as the strain rate decreases and partial premixing increases, which also increases the separation distance between the two reaction zones. The peak partially premixed flame temperature increases with increasing premixing of the fuel stream. The peak CO2 and H2O concentrations are relatively insensitive to partial premixing. The CO and H2 peak concentrations on the premixed side increase as the fuel-side equivalence ratio decreases. These species are transported to the nonpremixed reaction zone where they oxidize. The C2 species have peaks in the premixed reaction zone. The concentrations of olefins are ten times larger than those of the corresponding paraffins. The oxidizer is present in partially premixed flames throughout the combustion system and there are no regions characterized by simultaneous high temperature and high fuel concentration. As a result, pyrolysis reactions leading to soot formation are greatly diminished.  相似文献   

3.
An experimental study was performed on the combustion of lean-premixed spays in a counterflow. n-Decane was used as a liquid fuel with low volatility. The flame structure and stabilization were discussed based on the flame-spread mechanism of a droplet array with a low-volatility fuel. The spray flame consisted of a blue region and a yellow luminous region. The flame spread among droplets and group-flame formation through the droplet interaction were observed on the premixed spray side, while envelope flames were also observed on the opposing airflow side. The blue-flame region consisted of premixed flames propagating in the mixture layer around each droplet, the envelope diffusion flames around each droplet, the lower parts of the group diffusion flame surrounding each droplet cluster, and the envelope flame around droplets passing through the group flame. The flame was stabilized within a specific range of the mean droplet diameter via a balance between the droplet velocity and the flame-spread rate of the premixed spray.  相似文献   

4.
Combustion experiments of fuel droplet array in fuel vapor-air mixture were performed at microgravities to investigate growth mechanism of group combustion of fuel droplets. A 10-droplet array was inserted into the test section filled with a saturated fuel vapor-air mixture as a simple model of prevaporized sprays. Gas equivalence ratio of the fuel vapor-air mixture was regulated by the test section temperature. n-Decane droplets of 0.8 mm in the initial diameter were suspended at the crossing points of 10 sets of X-shaped suspenders. The first droplet was ignited by a hot wire to initiate flame spread along a fuel droplet array. Flame spread speed was obtained from the history of the leading edge position of a spreading flame. Effects of droplet spacing and gas equivalence ratio on the flame spreading behavior and the flame spread speed were examined. The droplet spacing and the gas equivalence ratio were varied from 1.6 to 10.2 mm and from 0.2 to 0.7, respectively. The gas equivalence ratio has little effect on the relationship between the flame spreading behavior and the droplet spacing. The flame spread speed increases as the increase in the gas equivalence ratio at all droplet spacings. The influence of the gas equivalence ratio on the flame spread speed becomes strong as the increase in the droplet spacings. The flame spread speed increases as the increase in the droplet spacing, and then decreases. The maximum flame spread speed appears in the range from 2.4 to 3 mm at all gas equivalence ratios.  相似文献   

5.
Experimental and numerical investigations of ignition in combustors with multiple burners have recently emerged and have provided new insights on the last phase of ignition in gas turbine-like annular geometries where the flame propagates from burner to burner. Previous comparisons between calculations and experiments of light-round in a laboratory scale annular combustion chamber have demonstrated the ability of large-eddy simulation to predict such processes for perfectly premixed conditions and, more recently, for n-heptane spray injection. The present analysis focuses on two additional operating points with liquid n-heptane sprays and the turbulent flame propagation in the two-phase mixture is examined through the behavior of its leading points. The validation of the light-round process is characterized in terms of ignition delays. The detailed analysis of the propagation through the definition of a leading point enables to highlight some key phenomena responsible for the flame behavior, such as the influence of the liquid droplet spray and its vaporization in the chamber. Calculations indicate that the volumetric expansion due to the chemical reaction at the flame induces a strong azimuthal flow in the fresh stream at a distance of several sectors ahead of the flame, which modifies conditions in this region. This creates heterogeneities in the gas composition and wakes on the downstream side of the swirling jets formed by the injectors, with notable effects on the motion of the leading point and on the absolute flame velocity.  相似文献   

6.
The combustion of two fuels with disparate reactivity such as natural gas and diesel in internal combustion engines has been demonstrated as a means to increase efficiency, reduce fuel costs and reduce pollutant formation in comparison to traditional diesel or spark-ignited engines. However, dual fuel engines are constrained by the onset of uncontrolled fast combustion (i.e., engine knock) as well as incomplete combustion, which can result in high unburned hydrocarbon emissions. To study the fundamental combustion processes of ignition and flame propagation in dual fuel engines, a new method has been developed to inject single isolated liquid hydrocarbon droplets into premixed methane/air mixtures at elevated temperatures and pressures. An opposed-piston rapid compression machine was used in combination with a newly developed piezoelectric droplet injection system that is capable of injecting single liquid hydrocarbon droplets along the stagnation plane of the combustion chamber. A high-speed Schlieren optical system was used for imaging the combustion process in the chamber. Experiments were conducted by injecting diesel droplet of various diameters (50 µm < do < 400 µm), into methane/air mixtures with varying equivalence ratios (0 < ϕ < 1.2) over a range of compressed temperatures (700 K < Tc < 940 K). Multiple autoignition modes was observed in the vicinity of the liquid droplets, which were followed by transition to propagating premixed flames. A computational model was developed with CONVERGE™, which uses a 141 species dual-fuel chemical kinetic mechanism for the gas phase along with a transient, analytical droplet evaporation model to define the boundary conditions at the droplet surface. The simulations capture each of the different ignition modes in the vicinity of the injected spherical diesel droplet, along with bifurcation of the ignition event into a propagating, premixed methane/air flame and a stationary diesel/air diffusion flame.  相似文献   

7.
The phenomenon of droplet clustering or grouping found when a spray of droplets is moving in an oscillating host flow field is investigated for the case of a polydisperse spray that fuels a laminar co-flow diffusion flame. A mathematical solution is developed for the liquid phase based on use of small Stokes numbers for size sections into which the polydisperse spray size distribution is divided. Droplet clustering in the oscillatory flow field is accounted for by constructing a special model for the sectional vaporization Damkohler numbers in accordance with droplet size. Combining this with a formal solution for a gas phase Schvab-Zel'dovich variable yields the means whereby flame dynamics can be described. Results calculated from this solution demonstrate that preferential droplet size behaviour (with smaller droplets tending to cluster to a greater extent and reduce the vaporization Damkohler number more than larger ones) can have a major impact on the flame dynamics through local droplet enrichment with attendant consequences on the production of fuel vapour. The dynamics of the sort of flame (over- or under-ventilated) and the occurrence of flame pinching leading to multiple flame sheets are altered under these circumstances. However, potential control of the actual initial spray polydispersity may reduce the intensity of such effects.  相似文献   

8.
A numerical study of one-dimensional n-heptane/air spray flames is presented. The objective is to evaluate the flame propagation speed in the case where droplets evaporate inside the reaction zone with possibly non-zero relative velocity. A Direct Numerical Simulation approach for the gaseous phase is coupled to a discrete particle Lagrangian formalism for the dispersed phase. A global two-step n-heptane/air chemical mechanism is used. The effects of initial droplet diameter, overall equivalence ratio, liquid loading and relative velocity between gaseous and liquid phases on the laminar spray flame speed and structure are studied. For lean premixed cases, it is found that the laminar flame speed decreases with increasing initial droplet diameter and relative velocity. On the contrary, rich premixed cases show a range of diameters for which the flame speed is enhanced compared to the corresponding purely gaseous flame. Finally, spray flames controlled by evaporation always have lower flame speeds. To highlight the controlling parameters of spray flame speed, approximate analytical expressions are proposed, which give the correct trends of the spray flame propagation speed behavior for both lean and rich mixtures.  相似文献   

9.
The quasi-steady vaporization and combustion of multiple-droplet arrays is studied numerically. Utilizing the Shvab–Zeldovich formulation, a transformation of the governing equations to a three-dimensional Laplace’s equation is performed, and the solution to Laplace’s equation is obtained numerically to find the effects of droplet interactions in symmetric, multiple-droplet arrays. Vaporization rates, flame surface shapes, and flame locations are found for different droplet array configurations and fuels. The number of droplets, the droplet arrangement within the arrays, and the droplet spacing within the arrays are varied to determine the effects of these parameters. Computations are performed for uniformly spaced three-dimensional arrays of up to 216 droplets, with center-to-center spacing ranging from 3 to 25 droplet radii. As a result of the droplet interactions, the number of droplets and relative droplet spacing significantly affect the vaporization rate of individual droplets within the array, and consequently the flame shape and location. For small droplet spacing, the individual droplet vaporization rate decreases below that obtained for an isolated droplet by several orders of magnitude. A similarity parameter which correlates vaporization rates with array size and spacing is identified. Individual droplet flames, internal group combustion, and external group combustion can be observed depending on the droplet geometry and boundary conditions.  相似文献   

10.
A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new insight into the local structure of this complex spray flame.  相似文献   

11.
The temperature field of a premixed methane symmetric laminar flame jet is visualized by studying the interferograms of the flame, using the Mach-Zehnder Interferometry. Two kinds of oxidizers are chosen for combustion: industrially pure oxygen and oxygen-enriched air. The flame is chosen to be both lean, and rich. For the lean oxygen-enriched combustion (OEC), the equivalence ratio was held constant at 0.5, and the oxygen enrichment was adjusted to 0.5 and 0.6, and for rich OEC, equivalence ratio is chosen to be 1.2 while the oxygen enrichment was 0.7 and 0.8. For methane/oxygen combustion, the equivalence ratio varied from 0.35 to 0.55 for the lean flame, and 1.3 and 1.7 for the rich flame. Attempt was made to keep the Reynolds number unchanged at 500, for OEC, and 1000, for methane/oxygen flame. In the present study a non-contact method is successfully developed to measure the temperature field of a premixed radially symmetric laminar methane flame jet. The effect of oxygen enrichment and equivalence ratio on temperature field is also investigated and depicted.  相似文献   

12.
Recent optical engine studies have linked increases in NOx emissions from fatty acid methyl ester combustion to differences in the premixed autoignition zone of the diesel fuel jet. In this study, ignition of single, isolated liquid droplets in quiescent, high temperature air was considered as a means of gaining insight into the transient, partially premixed ignition conditions that exist in the autoignition zone of a fatty acid methyl ester fuel jet. Normal gravity and microgravity (10−4 m/s2) droplet ignition delay experiments were conducted by use of a variety of neat methyl esters and commercial soy methyl ester. Droplet ignition experiments were chosen because spherically symmetric droplet combustion represents the simplest two-phase, time-dependent chemically reacting flow system permitting a numerical solution with complex physical submodels. To create spherically symmetric conditions for direct comparison with a detailed numerical model, experiments were conducted in microgravity by use of a 1.1 s drop tower. In the experiments, droplets were grown and deployed onto 14 μm silicon carbide fibers and injected into a tube furnace containing atmospheric pressure air at temperatures up to 1300 K. The ignition event was characterized by measurement of UV emission from hydroxyl radical (OH*) chemiluminescence. The experimental results were compared against predictions from a time-dependent, spherically symmetric droplet combustion simulation with detailed gas phase chemical kinetics, spectrally resolved radiative heat transfer and multi-component transport. By use of a skeletal chemical kinetic mechanism (125 species, 713 reactions), the computed ignition delay period for methyl decanoate (C11H22O2) showed excellent agreement with experimental results at furnace temperatures greater than 1200 K.  相似文献   

13.
Experimental and numerical investigations of single droplet burning modes in a lean, partially prevaporized swirl-stabilized spray flame are reported. In the experiment single droplet flames have been visualized by CH-PLIF and simultaneous recording of the Mie signal. Two single droplet burning modes were identified: the envelope flame is a spherical diffusion flame burning at near-stoichiometric conditions. The wake flame is a potentially lean, partially premixed flame located downstream of the droplet. The droplet burning mode is of practical relevance, since it has significant impact on NO formation due to incomplete prevaporization.The droplet burning mode is determined by the ratio of chemical and convective time scales. The convective time scale is related to the droplet slip velocity. The impact of turbulent gas phase velocity fluctuations on droplet mechanics and droplet burning is discussed, based on a previous numerical investigation. In the present study the droplet slip velocity was measured with the 3D Phase Doppler (3D-PD) technique. For the measured slip velocities and ambient conditions in the hot gas region of the spray flame, simulations of single droplet burning were performed utilizing detailed models for chemical reaction, diffusive transport and vaporization. An agreement between the droplet burning modes predicted by the simulation and the droplet burning modes observed in the experiments was found.  相似文献   

14.
Combustion experiments on fuel droplet–vapor–air mixtures have been performed with a rapid expansion apparatus which generates monodispersed droplet clouds with narrow diameter distribution using the condensation method. The effects of fine fuel droplets on flame propagation were investigated for ethanol droplet–vapor–air mixtures at various pressures from 0.2 to 1.0 MPa. A stagnant fuel droplet–vapor–air mixture, generated in a rapid expansion chamber, was ignited at the center of the chamber using an ignition wire. Spherical flame propagation under constant-pressure conditions was observed with a high-speed video camera and flame speed was measured. Total equivalence ratio, and the ratio of liquid fuel mass to total fuel mass, was varied from 0.6 to 1.4 and from zero to 56%, respectively. The mean droplet diameter of fuel droplet–vapor–air mixtures was set at 8.5 and 11 μm. It was found that the flame speed of droplet–vapor–air mixtures less than 0.9 in the total equivalence ratio exceeds that of premixed gases of the same total equivalence ratio at all pressures. The flame speed of fuel droplet–vapor–air mixtures decreases as the pressure increases in all total equivalence ratios. At large ratios of liquid fuel mass to total fuel mass, the normalized flame speed (the flame speed of droplet–vapor–air mixtures divided by the flame speed of the premixed gas with the same total equivalence ratio), increases with the increase in pressure for fuel-lean mixtures, and it decreases for fuel-rich mixtures. The outcome is reversed at small ratios of liquid fuel mass to total fuel mass; the normalized flame speed decreases with the increase in pressure for fuel-lean mixtures, and increases for fuel-rich mixtures. The results suggest that the increase in pressure promotes droplet evaporation in the preheat zone.  相似文献   

15.
Prior studies about liquid fuel combustion in a vitiated air environment have shown increased combustion efficiency with reduced NOx, CO, and soot emissions. The concept of lean azimuthal flame (LEAF), which can be associated to the latter combustion mode, is based on opposed injections of air and liquid fuel sprays in an axisymmetric chamber with a central outlet, which can result in a highly turbulent toroidal reaction zone. The mixture of fresh air and hot combustion products of each spray provides a vitiated cross-flow configuration to the next spray distributed along the chamber circumference, leading to ignition and sequential combustion of the sprays by the others. The present paper deals with a LEAF combustor with air-assisted spray atomization, which has not been investigated so far. The combustor is fueled with Jet A-1 and operated from 15 to 25 kW with variations in the atomization-air to liquid mass flow ratio (ALR). This study focuses on the flame topology transitions as a function of atomizer ALR. Experimental results based on flame chemiluminescence and OH planar laser-induced fluorescence show two flame topologies: tubular and LEAF topology for ratio of 2 and 4, respectively (denoted ALR2 and ALR4). The spray Mie scattering indicates a significant presence of unburnt droplets for ALR2, whereas quick evaporation is observed for ALR4 cases. In this paper, we propose and validate a basic model based on the spray droplet size distribution, and the evaporation and convection timescales, which are the prominent factors governing the flame topology. Indeed, for ALR2, the evaporation timescale is longer than the convective timescale, which causes incomplete spray evaporation and insufficient vitiated environment, leading to a tubular flame topology and preventing a LEAF to develop. In contrast, for ALR4, the spray evaporation timescales are smaller than the convective timescales, which aids the LEAF topology.  相似文献   

16.
In this contribution we report upon our static and dynamic light scattering experiments to characterize soot particles in flames. We studied sooting laminar premixed flame with acetylene as fuel mixed with air as oxidizer. The air equivalence ratio of the combustion was larger than one. We used a Kaskan type burner with circular geometry and a stabilizing flow of nitrogen around the flame. We focused on the determination of the size of the soot particles in the center of the flame as a function of height above burner. In addition we investigated the influence of the mixing ratio of the gases on the size of the particles. Our results show that static light scattering is better suited than dynamic light scattering for a fast and reliable characterization of soot particles in flames. The latter needs detailed a priori information about the flame to allow the unique determination of sizes from the diffusion measurements. The soot particles grow monotonously with height above burner and with decreasing air equivalence ratio. The aggregates have a fractal dimension lower than two.  相似文献   

17.
The combustion of premixed gas mixtures containing micro droplets of water was studied using one-dimensional approximation. The dependencies of the burning velocity and flammability limits on the initial conditions and on the properties of liquid droplets were analyzed. Effects of droplet size and concentration of added liquid were studied. It was demonstrated that the droplets with smaller diameters are more effective in reducing the flame velocity. For droplets vaporizing in the reaction zone, the burning velocity is independent of droplet size, and it depends only on the concentration of added liquid. With further increase of the droplet diameter the droplets are passing through the reaction zone with completion of vaporization in the combustion products. It was demonstrated that for droplets above a certain size there are two stable stationary modes of flame propagation with transition of hysteresis type. The critical conditions of the transition are due to the appearance of the temperature maximum at the flame front and the temperature gradient with heat losses from the reaction zone to the products, as a result of droplet vaporization passing through the reaction zone. The critical conditions are similar to the critical conditions of the classical flammability limits of flame with the thermal mechanism of flame propagation. The maximum decrease in the burning velocity and decrease in the combustion temperature at the critical turning point corresponds to predictions of the classical theories of flammability limits of Zel'dovich and Spalding. The stability analysis of stationary modes of flame propagation in the presence of water mist showed the lack of oscillatory processes in the frames of the assumed model.  相似文献   

18.
An analytical model based on an assumption of combined quasi-steady and transient behavior of the process is presented to exemplify the unsteady, sphero-symmetric single droplet combustion under microgravity. The model used in the present study includes an alternative approach of describing the droplet combustion as a process where the diffusion of fuel vapor residing inside the region between the droplet surface and the flame interface experiences quasi-steadiness while the diffusion of oxidizer inside the region between the flame interface and the ambient surrounding experiences unsteadiness. The modeling approach especially focuses on predicting; the variations of droplet and flame diameters with burning time, the effect of vaporization enthalpy on burning behavior, the average burning rates and the effect of change in ambient oxygen concentration on flame structure. The modeling results are compared with a wide range of experimental data available in the literature. It is shown that this simplified quasi-steady transient approach towards droplet combustion yields behavior similar to the classical droplet theory.  相似文献   

19.
A model is presented for a one-dimensional laminar premixed flame, propagating into a rich, off-stoichiometric, fresh homogenous mixture of water-in-fuel emulsion spray, air and inert gas. Due to its relatively large latent heat of vaporisation, the water vapour acts to cool the flame that is sustained by the prior release of fuel vapour. To simplify the inherent complexity that characterises the analytic solution of multi-phase combustion processes, the analysis is restricted to fuel-rich laminar premixed water-in-fuel flames, and assumes a single-step global chemical reaction mechanism. The main purpose is to investigate the steady-state burning velocity and burnt temperature as functions of parameters such as initial water content in the emulsified droplet and total liquid droplet loading. In particular, the influence of micro-explosion of the spray’s droplets on the flame’s characteristics is highlighted for the first time. Steady-state analytical solutions are obtained and the sensitivity of the flame temperature and the flame propagating velocity to the initial water content of the micro-exploding emulsion droplets is established. A linear stability analysis is also performed and reveals the manner in which the micro-explosions influence the neutral stability boundaries of both cellular and pulsating instabilities.  相似文献   

20.
The introduction of compound-drop spray in a combustion system is a new concept. These droplets bear two gasification stages to cause an integral positive or negative effect on a premixed flame to raise or lower the local temperature of the gasification region. In this paper, we adopt a compound drop which contains a water core encased by a layer of shell fuel. A one-dimensional homogeneous lean or rich premixed flame with the dilute compound-drop spray was investigated by using large activation energy asymptotic analysis. The compound-drop spray burning mode was defined and divided into completely pre-vaporised burning (CPB), shell pre-vaporised burning (SPB) and shell partially pre-vaporised (SPP) burning modes by way of the gasification zones of the shell fuel and the core water relative to the flame position. The influences of the initial droplet radius, the shell-fuel mass fraction and the liquid loading of the compound-drop spray on the lean and rich flames were analysed. By means of the normalisation parameter of flame propagation mass flux (), enhancement, suppression or extinction of the compound-drop spray flame can be represented clearly. Furthermore, from the observation of extinction, the necessary conditions of extinction of a lean spray flame by the internal heat transfer are that the spray is a negative effect and causes a sufficient heat loss rate at flame sheet downstream side. For a rich spray flame, three extinction patterns were observed; they occur in SPP, SPB or at the critical SPB mode, but do not in CPB. The extinction maps of the compound-drop spray demarcate the patterns and also indicate the limitations and corresponding conditions of the flame extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号