首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This paper reports a novel microfluidic method for the production of cross-linked alginate microparticles and nanoparticles. We describe a continuous process relying on both thermodynamic and hydrodynamic factors to form microdroplets. A rapid cross-linking reaction thereafter allows solidification of the polymer droplets either within the microfluidic device or "off-chip" to form alginate micro- and nanoparticles. Monodisperse droplets are generated by extruding an aqueous alginate solution using an axisymmetric flow-focusing design. As they flow downstream in the channel, due to water and the continuous phase being partially miscible, the water diffuses very slowly out of the polymeric droplets into the transport fluid, which causes the shrinkage of the drops and the condensation of the polymer phase. The resulting size of the solid particles depends on the polymer concentration and the ensuing balance between the kinetics of the cross-linking reaction and the volume loss due to solvent diffusion. This work details both a single-step microfluidic technique for the formation of alginate microparticles of sizes ranging from 1 to 50 microm via near-equilibrium solvent diffusion within a microfluidic device and thereafter a two-step method, which was shown to generate biopolymer nanoparticles of sizes ranging from 10 to 300 nm. These novel methodologies are extremely flexible and can be extended to the preparation of micro- and nanoparticles from a wide range of single or mixed synthetic and biologically derived polymers.  相似文献   

2.
The present investigation describes the synthesis and characterization of nanoparticles based on poly(acrylic acid) (PAA) intramolecularly cross-linked with diamine, 2,2′-(ethylenedioxy)bis(ethylamine), using water-soluble carbodiimide. The aqueous colloid dispersions of nanoparticles were clear or mildly opalescent depending on the ratio of cross-linking, pH of the solution, and the molecular weight of PAA, finding consistent with values of transmittance between 3% and 99%. The structure was determined by nuclear magnetic resonance spectroscopy, and the particle size was identified by dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. It was found that particle size depends on the pH, and at a given pH, it was caused by the ratio of cross-linking and the molecular weight of PAA. Particle size measured by TEM varied in the range of 20 and 80 nm. In the swollen state, the average size of the particles measured by DLS was in the range of 35–160 nm.  相似文献   

3.
The properties of polymer-coated magnetite nanoparticles, which have the potential to be used as effective magnetic resonance contrast agents, have been studied. The magnetite particles were synthesized by using continuous synthesis in an aqueous solution. The polymer-coated magnetite nanoparticles were synthesized by seed precipitation polymerization of methacrylic acid and hydroxyethyl methacrylate in the presence of the magnetite nanoparticles. The particle size was measured by laser light scattering. It was shown that the particle size, variance, magnetic properties, and stability of aqueous magnetite colloidal dispersion strictly depend on the nature of the stabilizing agent. The average hydrodynamic radius of the magnetite particles was found to be 5.7 nm in the stable aqueous colloidal dispersion. An inclusion of the magnetite particle into a hydrophilic polymeric shell increases the stability of the dispersion and decreases the influence of the stabilizing agent on the magnetic and structural properties of the magnetite particles as was shown by X-ray diffraction and M?ssbauer and IR spectroscopy, as well as by vibrating sample magnetometry. The variation in the polymeric shell size and the polymer net density can be useful tools for evaluation of the polymer-coated magnetite particles as effective contrast agents. Copyright 1999 Academic Press.  相似文献   

4.
We discuss the integration of membrane emulsification and pervaporation processes for the continuous production of functional materials, such as silica-encapsulated magnetite nanoparticle clusters and asymmetric Janus nanoparticles, by the emulsion droplet solvent evaporation method, which has traditionally been performed in small-scale batch systems. An organic solvent containing primary magnetite nanoparticles (~10 nm) coated with oleic acid was dispersed in a continuous aqueous phase by membrane emulsification, which enabled the consistent production of nanoparticle-laden solvent droplets of well-controlled size with narrow size distributions. The solvent was removed from the emulsion by pervaporation. Prior to complete solvent removal, the nanoparticle packing density within the clusters was a function of the residence time in the pervaporation unit. The final clusters formed, ~100-300 nm in size, exhibited the same superparamagnetic behavior as the primary nanoparticles, and were stable in aqueous media with a zeta potential of -70 mV at neutral pH. A facile method was used to coat the nanoclusters with a silica shell, providing sites for surface functionalization with a range of organic ligands. The nanoparticles and clusters were analyzed by a variety of techniques, including TGA, DLS, TEM, EDS, and SQUID. The effects of various parameters, such as the membrane dimensions and flow rate through the unit, on the mass transport rates were elucidated through a parametric modeling study. The applicability of the methods to the production of polymeric beads and more complex particles was demonstrated; to create Janus structures, organic polymer solutions were dispersed as droplets in continuous aqueous phases, and the solvent was subsequently evaporated. The Janus particles consisted either of polymeric cores with magnetite nanoparticles clustered as islands on their surfaces, or of two phase-separated polymers, each constituting half of any given polymeric particle.  相似文献   

5.
The present investigation describes the synthesis and characterization of novel biodegradable nanoparticles based on hyaluronic acid (HA). The diamine, 2,2′(ethylenedioxy)bis(ethylamine) was used for cross-linking of the HA linear chains. The condensation reaction of amino groups and pendant carboxyl groups of HA was performed in aqueous media at room temperature using water-soluble carbodiimide. The prepared nanosystems, aqueous solutions, or dispersions of nanoparticles were stable, transparent, or mildly opalescent systems depending on the ratio of cross-linking, findings consistent with values of transmittance above 77%. The structure of products was determined by nuclear magnetic resonance spectroscopy, and the particle size was identified by laser light scattering (DLS) and transmission electron microscopy (TEM) measurements. Particle size measured by TEM varied less than 130 nm; in the swollen state, the average size of the particles measured by DLS was in the range of 30–140 nm depending on the ratio of cross-linking and the molecular weight of HA. Formation of cross-linked nanoparticles results in a viscosity drop compared to the viscosity of the corresponding solution of the HA, and this trend becomes decreasingly appreciable as the molecular weight of HA decreases.  相似文献   

6.
7.
Nanoparticles are widely studied as carrier vehicles in biological systems because their size readily allows access through cellular membranes. Moreover, they have the potential to carry cargo molecules and as such, these factors make them especially attractive for intravenous drug delivery purposes. Interest in protein-based nanoparticles has recently gained attraction due to particle biocompatibility and lack of toxicity. However, the production of homogeneous protein nanoparticles with high encapsulation efficiencies, without the need for additional cross-linking or further engineering of the molecule, remains challenging. Herein, we present a microfluidic 3D co-flow device to generate human serum albumin/celastrol nanoparticles by co-flowing an aqueous protein solution with celastrol in ethanol. This microscale co-flow method resulted in the formation of nanoparticles with a homogeneous size distribution and an average size, which could be tuned from ≈100 nm to 1 μm by modulating the flow rates used. We show that the high stability of the particles stems from the covalent cross-linking of the naturally present cysteine residues within the particles formed during the assembly step. By choosing optimal flow rates during synthesis an encapsulation efficiency of 75±24 % was achieved. Finally, we show that this approach achieves significantly enhanced solubility of celastrol in the aqueous phase and, crucially, reduced cellular toxicity.  相似文献   

8.
This work describes the formation of water-soluble hydrophilic nanoparticles from biosynthetic poly-γ-glutamic acid (PGA). Nanoparticles were formed by cross-linking using 2,2′-(ethylenedioxy) diethylamine in the presence of water-soluble carbodiimide. The structure was determined by nuclear magnetic resonance spectroscopy and the particle size by transmission electron microscopy (TEM), size exclusion chromatography (SEC), and dynamic light-scattering (DLS) measurements. The results from TEM, SEC, and DLS reveal that the particle size depends on the ratio of cross-linking. Particle size values measured by TEM were between 20 and 90 nm. Formation of cross-linked nanoparticles results in a dramatic viscosity drop compared to the viscosity of the corresponding solution of the parent PGA. The viscosity and DLS experiments disclose an intriguing interplay between intrachain and interchain cross-linking of the polymer chains, depending on the cross-linker density and polymer concentration. The SEC measurements show that the retention time of the major portion of particles increase because of the higher cross-linking ratio. At moderate cross-linker concentration, intramolecular cross-linking is the dominant process, whereas at higher cross-linker densities, the interpolymer cross-linking plays an important role. As a result, large clusters are also formed.  相似文献   

9.
Well-defined colloidal polymeric nanoparticles are important in advanced biomedical and optical technologies. We report a facile microwave methodology to prepare narrowly dispersed cross-linked polymeric nanoparticles at high solids content through a surfactant-free emulsion polymerization process. The nanoparticle size was controlled by using cross-linkers with enhanced reactivity through a one-step microwaving process, significantly simplifying the nanoparticle synthetic process. The successful size control was realized by confining the cross-linking to intraparticle cross-linking rather than interparticle cross-linking. We also discovered that the superheating/dielectric heating effect associated with microwave irradiation could be utilized to effectively reduce the nanoparticle size.  相似文献   

10.
Enzymes in the cavity of hollow silica nanoparticles   总被引:3,自引:0,他引:3  
Due to limitations of the existing preparative methods of hollow nanoparticles by either heating at high temperature (>600 degrees C) or by using strong acid, alkali, or an organic solvent, it was not possible up till now to encapsulate any sensitive organic molecule like enzyme or others inside the cavity of hollow nanoparticles. We have demonstrated a much softer method of preparing hollow silica nanoparticles with horseradish peroxidase (HRP) inside the cavity by synthesizing HRP-doped core-shell silica-coated silver chloride nanoparticles and finally leaching out silver chloride with dilute ammonia at low temperatures. TEM pictures showed the hollow cavity inside the nanoparticles. The enzyme entrapped in these particles was active. The turnover number of HRP entrapped into these hollow particles and dispersed in aqueous buffer (pH 7.2) (k(cat) = 2.56 x 10(6) s(-1)) was found to be less than that of free enzyme in aqueous buffer (k(cat) = 6.133 x 10(7) s(-1)) but higher than that of HRP entrapped in solid-core silica nanoparticles and dispersed in aqueous buffer (k(cat) = 1.05 x 10(5) s(-1)). The result showed that hollow nanoparticles could be prepared using soft chemical methods and sensitive chemicals like active enzyme could be entrapped in the cavities and it retains its activity.  相似文献   

11.
The precision and accuracy of measurements of the diameter and electrophoretic mobility (mu) of polymeric nanoparticles is compared using four different analytical approaches: carbon-nanotube-based Coulter counting, dynamic light scattering (DLS), transmission electron microscopy (TEM), and phase analysis light scattering (PALS). Carbon-nanotube-based Coulter counters (CNCCs) use a 132 nm diameter channel to simultaneously determine the diameter (28-90 nm) and mu value for individual nanoparticles. These measurements are made without calibration of the CNCC and without labeling the sample. Moreover, because CNCCs measure the properties of individual particles, they provide true averages and polydispersities that are not convoluted into the intrinsic instrumental response function of the CNCC. CNCCs can be used to measure the size of individual nanoparticles dispersed in aqueous solutions, which contrasts with the TEM-measured size of individual dehydrated particles and the ensemble size averages of dispersed particles provided by DLS. CNCCs provide more precise values of mu than PALS.  相似文献   

12.
The in situ formation of gold nanoparticles into the natural polymer chitosan is described upon pulsed laser irradiation. In particular, hydrogel-type films of chitosan get loaded with the gold precursor, chloroauric acid salt (HAuCl(4)), by immersion in its aqueous solution. After the irradiation of this system with increasing number of ultraviolet laser pulses, we observe the formation of gold nanoparticles with increasing density and decreasing size. Analytical studies using absorption measurements, atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy of the nanocomposite samples throughout the irradiation procedure reveal that under the specific irradiation conditions there are two competing mechanisms responsible for the nanoparticles production: the photoreduction of the precursor responsible for the rising growth of gold particles with increasing size and the subsequent photofragmentation of these particles into smaller ones. The described method allows the localized formation of gold nanoparticles into specific areas of the polymeric films, expanding its potential applications due to its patterning capability. The size and density control of the gold nanoparticles, obtained by the accurate increase of the laser irradiation time, is accompanied by the simultaneously controlled increase of the wettability of the obtained gold nanocomposite surfaces. The capability of tailoring the hydrophilicity of nanocomposite materials based on natural polymer and biocompatible gold nanoparticles provides new potentialities in microfluidics or lab on chip devices for blood analysis or drugs transport, as well as in scaffold development for preferential cells growth.  相似文献   

13.
Copper sols stabilized by a polymer-colloid complex are studied via dynamic light scattering and transmission electron microscopy. It is shown that the polymer-colloid complex including poly(acrylic acid) and the nonionogenic polymeric surfactant poly(ethylene glycol-600-monolaurate) is an effective protector of copper nanoparticles formed via the reduction of Cu2+ ions in an aqueous medium. The sizes of sol particles of the nanocomposite consisting of the polymer-colloid complex and copper nanoparticles depend on the method of preparation of the nanocomposite. The incorporation of the copper nanoparticles being formed (an average diameter of 5 nm) into particles of the polymer-colloid complex leads to an insignificant change in the sizes of the complex particles. The same sizes are typical for particles of the nanocomposite formed during the introduction of surfactant micelles in the copper sol formed in the solution of poly(acrylic acid). The interaction of copper nanoparticles formed in an aqueous medium with surfactant micelles entails their aggregation; as a result, these nanoparticles turn out to be incorporated into large aggregates with equivalent radii of up to 100 nm. When poly(acrylic acid) is incorporated into this sol, the sizes of its particles insignificantly change apparently because of the low rate of structural rearrangements accompanying the formation of the polymer-colloid complex.  相似文献   

14.
Colloidal iron oxides play an important role as magnetic resonance imaging (MRI) contrast agents. The superparamagnetic particles actually used are constituted by solid cores (diameter of 5-15 nm), generally coated by a thick polysaccharidic layer (hydrodynamic radii of 30-100 nm), and formulated by direct coprecipitation of iron salts in the presence of polymeric material. To better control the synthesis, we attempted to formulate new stable uncoated superparamagnetic nanoparticles. Colloids were generated by coprecipitation of an aqueous solution of iron salts and tetramethylammonium hydroxide (TMAOH) solution. The influence of parameters such as media composition, iron media, injection fluxes, Fe and TMAOH concentrations, temperature, and oxygen on size, magnetic and magnetic resonance relaxometric properties, and colloidal stability of particles were evaluated. We have determined the relative importance of these parameters as well as the optimal conditions for obtaining uncoated stable particles with an average size of 5 nm and interesting relaxivities. The interpretation of the observed limits takes into account diffusibilities of reactants and product, feeding rates of reactants, and surface properties of nanoparticles. A model of synthesis, related to spontaneous emulsification of suspensions, is proposed. Copyright 1999 Academic Press.  相似文献   

15.
We report here a study on the microstructure formation process of polymeric nanoparticles based on polyelectrolyte complexes. When polyanion poly(acrylic acid) (PAA) was dropped into polycation chitosan (CS) solution, CS-PAA nanoparticles with diverse microstructure would be formed under different experimental conditions. The microstructure of CS-PAA nanoparticles changed from solid spherical nanoparticles to core-shell separative ones and turned back to solid spherical ones with the variation of preparation conditions. The influence of molecular weight of CS and PAA, shell cross-linking, dropping temperature on the size, stability and morphology of CS-PAA nanoparticles were also studied. The nanoparticle size was affected by the molecular weight of CS and PAA, the ratio of amino group to carboxyl group (na/nc) and the incubation temperature as well. The shell-cross-linking provides a means to stabilize these nanoparticles. These nanoparticles can encapsulate plasmid DNA very well, which makes them have great potential in gene delivery.  相似文献   

16.
Lipid-polymer hybrid nanoparticle, consisting of a hydrophobic polymeric core and a lipid monolayer shell, represents a new and promising drug delivery platform that has shown controllable particle size and surface functionality, high drug loading yield, sustained drug release profile, and excellent in vitro and in vivo stability. These lipid monolayer-coated polymeric nanoparticles are typically fabricated through a modified nanoprecipitation method, which involves sample heating, vortexing, and solvent evaporation. Herein we report a new and fast method to synthesize lipid-polymer hybrid nanoparticles with controllable and nearly uniform particle size. Using a bath sonication approach, we demonstrate that the whole hybrid nanoparticle synthesis process can be completed in about 5 min compared with a few hours for previous synthesis approaches. The size and polydispersity of the resulting nanoparticles can be readily controlled by tuning the relative concentrations of individual building components. Colloidal stability tests of the synthesized hybrid nanoparticles in PBS buffer and serum show no signs of aggregation over a period of 5 days. The present method improves the production rate of the hybrid nanoparticles by near 20-fold while not compromising the physicochemical properties of the particles. This work may facilitate the bench-to-bedside translation of lipid-polymer hybrid nanoparticles as a robust drug nanocarrier by allowing for fabricating a large amount of these nanoparticles at high production rate.  相似文献   

17.
Aqueous chemical oxidative dispersion polymerizations of pyrrole using PdCl2 oxidant were conducted using water-soluble polymeric colloidal stabilizers in order to synthesize polypyrrole–palladium (PPy–Pd) nanocomposite particles in one step. PPy–Pd nanocomposite particles with number average diameters of approximately 30 nm were successfully obtained as colloidally stable aqueous dispersions, which were stable at least for 7 months, using poly(4-lithium styrene sulfonic acid) colloidal stabilizer. The resulting nanocomposite particles were extensively characterized with respect to particle size, size distribution, colloidal stability, nanomorphology, surface/bulk chemical compositions, and conductivity. X-ray photoelectron spectroscopy indicated the existence of poly(styrene sulfonic acid) colloidal stabilizer on the surface of the nanocomposite particles. Transmission electron microscopy studies confirmed that nanometer-sized Pd nanoparticles were distributed in the PPy matrix.  相似文献   

18.
Electrohydrodynamic atomization (EHDA) has many applications such as electrospray ionization in mass spectroscopy, electrospray deposition of thin films, pharmaceutical productions, and polymeric particle fabrications for drug encapsulation. In the present study, EHDA was employed to produce biodegradable polymeric micro- and nanoparticles. The effects of processing parameters such as polymer concentration, flow rate, surfactants, organic salt, and setup configurations on the size and morphology of polymeric particles were investigated systematically. By changing the various processing parameters, controllable particle shape and size can be achieved. PLGA nanoparticles with size of around 250 nm can be obtained by using organic salts to increase the conductivity of the spraying solution even at a relatively high flow rate. A higher flow rate has the advantage of producing a stable cone spray and can be easily reproduced. Solid and porous particles can be fabricated using different experimental setups to control the organic solvent evaporation rate. Also, paclitaxel, a model antineoplastic drug, was encapsulated in polymeric particles which can be employed for controlled release applications. In short, EHDA is a promising technique to fabricate polymeric micro- or nanoparticles which can be used in drug delivery systems.  相似文献   

19.
A new method is described for the preparation of sterically stabilized nanoparticles of defined size and polydispersity which are stabilized in aqueous solution by the presence of covalently linked monomethoxy–poly (oxyethylene) (MeOPOE) chains. The nanoparticles (100–270 nm mean diameter) were prepared by a process of desolvation of a graft copolymer prepared from poly(2-aminoethylmethacrylate) (PAEMA) and MeOPOE. Reproducible desolvation was achieved by the addition of sodium phosphate buffer to the copolymer in aqueous solution to give particles which were crosslinked in situ with the addition of glutaraldehyde. The size (mean diameter) and polydispersity (Q) of the particles were determined by Photon Correlation Spectroscopy (PCS). The temperature at which the desolvation reaction was performed was found to influence the particle size; at low temperatures (5–12°C), small particles were produced (99–121 nm, Q = 0.090–0.121), whereas at much higher temperatures (40–55°C), particles as large as 224–275 nm (Q = 0.138–0.127) were generated. Other parameters such as the graft copolymer concentration, the amount of glutaraldehyde added, the pH of the sodium phosphate buffer added, and the reaction time were found to be of relative insignificance in influencing the particle size. In addition to those involved in drug delivery, our method of nanoparticle preparation may be of interest to those engaged in the preparation of particulate materials and colloidal dispersions for other specific applications (e.g. stabilized photographic emulsions).  相似文献   

20.
This paper describes the processing of silver‐nanoparticle‐doped poly(vinylidene fluoride). The effects of the concentration and size of the filler on the electroactive phase of the polymer and the optical and electrical properties are discussed. Spherical silver nanoparticles incorporated into the poly(vinylidene fluoride) polymeric matrix induce nucleation of the electroactive γ phase. The electroactive phase content strongly depends on the content and size of the nanoparticles. In particular, there is a critical nanoparticle size, below which the filler losses its nucleation efficiency due to its small size relative to that of the polymer macromolecules. Furthermore, the presence of surface plasmon resonance absorption in the composites is observed, which once again shows a strong dependence on the concentration and size of the particles. The absorption is larger for higher concentrations, and for a given concentration increases with particle size. This behavior is correlated to the electrical response and is related to the extra bands and electrons provided by the nanoparticles in the large energy band gap of the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号