首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The series of heteroleptic cyclometalated Ir(III) complexes for organic light‐emitting display application have been investigated theoretically to explore their electronic structures and spectroscopic properties. The geometries, electronic structures, and the lowest‐lying singlet absorptions and triplet emissions of Ir‐(pmb)3 and theoretically designed models Ir‐(Rpmb)2pic were investigated with density functional theory (DFT)‐based approaches, where pmb = phenyl‐methyl‐benzimidazolyl, pic = picolinate, and R = H/F. Their structures in the ground and excited states have been optimized at the DFT/B3LYP/LANL2DZ and TDDFT/B3LYP/LANL2DZ levels, and the lowest absorptions and emissions were evaluated at B3LYP and M062X level of theory, respectively. The mobility of holes and electrons were studied computationally based on the Marcus theory. Calculations of ionization potentials were used to evaluate the injection abilities of holes into these complexes. The reasons for the higher electroluminescence efficiency and phosphorescence quantum yields in Ir‐(Rpmb)2pic than in Ir‐(pmb)3 have been investigated. The designed moleculars are expected to be highly emissive in pure‐blue region. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
A series of heteroleptic cyclometalated Ir (III) complexes with low‐color‐temperature and low‐efficiency roll‐off properties, which cause a fast reduction in efficiency when the drive current increases, for organic light‐emitting devices are investigated theoretically to explore their electronic structures and spectroscopic properties. The geometries, electronic structures, lowest‐lying singlet absorptions and triplet emissions of (ptpy)2Ir(acac), and the theoretically designed models (ptpy)2Ir(tpip), (F‐ptpy)2Ir(acac), (F‐ptpy)2Ir(tpip), (F2‐ptpy)2Ir(acac) and (F2‐ptpy)2Ir(tpip), are investigated with density functional theory approaches, where ptpy denotes 4‐phenylthieno [3,2‐c] pyridine, acac denotes acetylacetonate, tpip denotes tetraphenylimido‐diphosphinate, F‐ptpy denotes 4‐(3‐fluorophenyl) thieno [3,2‐c] pyridine, and F2‐ptpy denotes 4‐(2,4‐difluorophenyl) thieno [3,2‐c] pyridine.  相似文献   

3.
Synthesis of the polymer whose end is functionalized by fac‐Ir(ppy)3 (ppy = 2‐phenylpyridyl) was achieved by using (living) anionic polymerization of 1,3‐cyclohexadiene: the reaction of poly(1,3‐cyclohexadienyl)lithium (PCHDLi) with fac‐Ir(ppy)2(vppy) [vppy = 2‐(4‐vinylphenyl)pyridyl] resulted in nucleophilic attack of the carbanion in PCHDLi on the vinyl group of fac‐Ir(ppy)2(vppy) selectively. Complexation of the pyridyl ring protected the α‐carbons of fac‐Ir(ppy)2(vppy) from the reaction of the anionic polymer. The homopolymerization of fac‐Ir(ppy)2(vppy) did not occur, and only one molecule of fac‐Ir(ppy)2(vppy) reacted with the carbanion of PCHDLi and was selectively incorporated into an end of poly(1,3‐cyclohexadiene) (PCHD). Thus, the PCHD with fac‐Ir(ppy)3 end‐group was obtained with a well‐controlled and defined polymer structure and molecular weight. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
The synthesis, structure, electrochemistry, and photophysical properties of a series of heteroleptic tris‐ cyclometalated PtIV complexes are reported. The complexes mer‐[Pt(C^N)2(C′^N′)]OTf, with C^N=C‐deprotonated 2‐(2,4‐difluorophenyl)pyridine (dfppy) or 2‐phenylpyridine (ppy), and C′^N′=C‐deprotonated 2‐(2‐thienyl)pyridine (thpy) or 1‐phenylisoquinoline (piq), were obtained by reacting bis‐ cyclometalated precursors [Pt(C^N)2Cl2] with AgOTf (2 equiv) and an excess of the N′^C′H pro‐ligand. The complex mer‐[Pt(dfppy)2(ppy)]OTf was obtained analogously and photoisomerized to its fac counterpart. The new complexes display long‐lived luminescence at room temperature in the blue to orange color range. The emitting states involve electronic transitions almost exclusively localized on the ligand with the lowest π–π* energy gap and have very little metal character. DFT and time‐dependent DFT (TD‐DFT) calculations on mer‐[Pt(ppy)2(C′^N′)]+ (C′^N′=thpy, piq) and mer/fac‐[Pt(ppy)3]+ support this assignment and provide a basis for the understanding of the luminescence of tris‐cyclometalated PtIV complexes. Excited states of LMCT character may become thermally accessible from the emitting state in the mer isomers containing dfppy or ppy as chromophoric ligands, leading to strong nonradiative deactivation. This effect does not operate in the fac isomers or the mer complexes containing thpy or piq, for which nonradiative deactivation originates mainly from vibrational coupling to the ground state.  相似文献   

5.
A combined experimental study and density functional theory calculations of fac‐[MnBr (CO)3L] complexes (L = 2‐(2′‐pyridyl)benzimidazole ligand, furnished with either morpholine (Lmorph) or phthalimido (Lphth) side‐chain) were performed using different spectral and analytical tools. The synthesized complexes released carbon monoxide upon the exposure to LED source light at 468 nm. Illumination of fac‐[MnBr (CO)3L] (10 μM) in the myoglobin solution (Mb) produced about 25 μM MbCO. The plateau of the CO release process is attained within 25 min. With the aid of time‐dependent density functional theory calculations, the observed lowest energy absorption transition at ~ 400 nm has a ground‐state composed of d (Mn)/π (pyridyl) and excited‐state of ligand π*‐orbitals forming MLCT/π‐π*. Natural population analyses of fac‐[MnBr (CO)3L] were carried out to get information about the strength of Mn–CO bonds, electronic arrangment and natural charge of manganese ion.  相似文献   

6.
We report the synthesis of a new class of thermally stable and strongly luminescent cyclometalated iridium(III) complexes 1 – 6 , which contain the 2‐acetylbenzo[b]thiophene‐3‐olate (bt) ligand, and their application in organic light‐emitting diodes (OLEDs). These heteroleptic iridium(III) complexes with bt as the ancillary ligand have a decomposition temperature that is 10–20 % higher and lower emission self‐quenching constants than those of their corresponding complexes with acetylacetonate (acac). The luminescent color of these iridium(III) complexes could be fine‐tuned from orange (e.g., 2‐phenyl‐6‐(trifluoromethyl)benzo[d]thiazole (cf3bta) for 4 ) to pure red (e.g., lpt (Hlpt=4‐methyl‐2‐(thiophen‐2‐yl)quinolone) for 6 ) by varying the cyclometalating ligands (C‐deprotonated C^N). In particular, highly efficient OLEDs based on 6 as dopant (emitter) and 1,3‐bis(carbazol‐9‐yl)benzene (mCP) as host that exhibit stable red emission over a wide range of brightness with CIE chromaticity coordinates of (0.67, 0.33) well matched to the National Television System Committee (NTSC) standard have been fabricated along with an external quantum efficiency (EQE) and current efficiency of 9 % and 10 cd A?1, respectively. A further 50 % increase in EQE (>13 %) by replacing mCP with bis[4‐(6H‐indolo[2,3‐b]quinoxalin‐6‐yl)phenyl]diphenylsilane (BIQS) as host for 6 in the red OLED is demonstrated. The performance of OLEDs fabricated with 6 (i.e., [(lpt)2Ir(bt)]) was comparable to that of the analogous iridium(III) complex that bore acac (i.e., [(lpt)2Ir(acac)]; 6 a in this work) [Adv. Mater.­ 2011 , 23, 2981] fabricated under similar conditions. By using ntt (Hnnt=3‐hydroxynaphtho[2,3‐b]thiophen‐2‐yl)(thiophen‐2‐yl)methanone) ligand, a substituted derivative of bt, the [(cf3bta)2Ir(ntt)] was prepared and found to display deep red emission at around 700 nm with a quantum yield of 12 % in mCP thin film.  相似文献   

7.
Two biscatecholester ligands with oligoether spacers were used to prepare dinuclear titanium(IV) triscatecholate based helicates. In the case of Li4[( 1 / 2 )3Ti2], “classical” helicates with three internally bound Li+ ions and syn‐oriented ligands in the complex units (fac/fac isomer) were obtained. In the case of the sodium salt Na4[( 2 )3Ti2], a different homochiral dinuclear triple‐stranded helicate with two internally bound Na+ ions was formed. The complex units are anti‐configured, and two of the ligand spacers are connecting internal with external positions of the helicate (mer/mer isomer). Removal of the sodium ions and addition of lithium ions leads to the switching from one topology to the other with an expanded helicate [( 2 )3Ti2]4? as an intermediate. Switching back to the “non‐classical” helicate cannot be observed because severe structural rearrangements would be required.  相似文献   

8.
The synthesis of two novel titanium carbene complexes from the bis(thiophosphinoyl)methanediide geminal dianion 1 (SCS2?) is described. Dianion 1 reacts cleanly with 0.5 equivalents of [TiCl4(thf)2] to afford the bis‐carbene complex [(SCS)2Ti] ( 2 ) in 86 % yield. The mono‐carbene complex [(SCS)TiCl2(thf)] ( 3 ) can also be obtained by using an excess of [TiCl4(thf)2]. The structures of 2 and 3 are confirmed by X‐ray crystallography. A strong nucleophilic reactivity towards various electrophiles (ketones and aldehydes) is observed. The reaction of 3 with N,N′‐dicyclohexylcarbodiimide (DCC) and phenyl isocyanate leads to the formation of two novel diphosphinoketenimines 8 a and 8 b . The bis‐titanium guanidinate complex 9 is trapped as the by‐product of the reaction with DCC. The X‐ray crystal structures of 8 a and 9 are presented. The mechanism of the reaction between complex 3 and DCC is rationalized by DFT studies.  相似文献   

9.
A series of phosphorescent cyclometalated iridium complexes with 2,5‐diphenylpyridine‐based ligands has been synthesized and characterized to investigate the effect of the simple ligand modification on photophysics, thermostability and electrochemistry. The complexes have the general structure (CN)2Ir(acac), where CN is a monoanionic cyclometalating ligand [e.g. 2,5‐diphenylpyridyl (dppy), 2,5‐di(4‐methoxyphenyl)pyridyl (dmoppy), 2,5‐di(4‐ethoxyphenyl)pyridyl (deoppy) and 2,5‐di(4‐ethylphenyl)pyridyl (deppy)]. The absorption, emission, cyclic voltammetry and thermostability of the complexes were systematically investigated. The (dppy)2Ir(acac) has been characterized using X‐ray crystallography. Calculation on the electronic ground state of (dppy)2Ir(acac) was carried out using B3LYP density functional theory. The highest occupied molecular orbital (HOMO) level is a mixture of Ir and ligand orbitals, while the lowest occupied molecular orbital (LUMO) is predominantly dppy ligand‐based. Electrochemical studies showed the oxidation potentials of (dmoppy)2Ir(acac), (deoppy)2Ir(acac), (deppy)2Ir(acac) were smaller than that of (ppy)2Ir(acac), while the oxidation potential of (dppy)2Ir(acac) was larger relative to (ppy)2Ir(acac). The 10% weight reduction temperatures of these complexes were above that of (ppy)2Ir(acac). All complexes exhibited intense green photoluminescence, which has been attributed to MLCT triplet emission. The maximum emission wavelengths in CH2Cl2 at room temperature were in the range 531–544 nm, which is more red‐shifted than that of (ppy)2Ir(acac). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The synthesis of fac‐[Ir{N,C1′‐(2,2′‐NC5H4C6H3‐5′‐C?C‐1‐C6H2‐3,5‐Et2‐4‐C?CC6H4‐4‐C?CH)}3] ( 10 ), which bears pendant ethynyl groups, and its reaction with [RuCl(dppe)2]PF6 to afford the heterobimetallic complex fac‐[Ir{N,C1′‐(2,2′‐NC5H4C6H3‐5′‐C?C‐1‐C6H2‐3,5‐Et2‐4‐C?CC6H4‐4‐C?C‐trans‐[RuCl(dppe)2])}3] ( 11 ) is described. Complex 10 is available from the two‐step formation of iodo‐functionalized fac‐tris[2‐(4‐iodophenyl)pyridine]iridium(III) ( 6 ), followed by ligand‐centered palladium‐catalyzed coupling and desilylation reactions. Structural studies of tetrakis[2‐(4‐iodophenyl)pyridine‐N,C1′](μ‐dichloro)diiridium 5 , 6 , fac‐[Ir{N,C1′‐(2,2′‐NC5H4C6H3‐5′‐C?C‐1‐C6H2‐3,5‐Et2‐4‐C?CH)}3] ( 8 ), and 10 confirm ligand‐centered derivatization of the tris(2‐phenylpyridine)iridium unit. Electrochemical studies reveal two ( 5 ) or one ( 6 – 10 ) Ir‐centered oxidations for which the potential is sensitive to functionalization at the phenylpyridine groups but relatively insensitive to more remote derivatization. Compound 11 undergoes sequential Ru‐centered and Ir‐centered oxidation, with the potential of the latter significantly more positive than that of Ir(N,C′‐NC5H4‐2‐C6H4‐2)3. Ligand‐centered π–π* transitions characteristic of the Ir(N,C′‐NC5H4‐2‐C6H4‐2)3 unit red‐shift and gain in intensity following the iodo and alkynyl incorporation. Spectroelectrochemical studies of 6 , 7 , 9 , and 11 reveal the appearance in each case of new low‐energy LMCT bands following formal IrIII/IV oxidation preceded, in the case of 11 , by the appearance of a low‐energy LMCT band associated with the formal RuII/III oxidation process. Emission maxima of 6 – 10 reveal a red‐shift upon alkynyl group introduction and arylalkynyl π‐system lengthening; this process is quenched upon incorporation of the ligated ruthenium moiety on proceeding to 11 . Third‐order nonlinear optical studies of 11 were undertaken at the benchmark wavelengths of 800 nm (fs pulses) and 532 nm (ns pulses), the results from the former suggesting a dominant contribution from two‐photon absorption, and results from the latter being consistent with primarily excited‐state absorption.  相似文献   

11.
A family of HY zeolite‐supported cationic organoiridium carbonyl complexes was formed by reaction of Ir(CO)2(acac) (acac=acetylacetonate) to form supported Ir(CO)2 complexes, which were treated at 298 K and 1 atm with flowing gas‐phase reactants, including C2H4, H2, 12CO, 13CO, and D2O. Mass spectrometry was used to identify effluent gases, and infrared and X‐ray absorption spectroscopies were used to characterize the supported species, with the results bolstered by DFT calculations. Because the support is crystalline and presents a nearly uniform array of bonding sites for the iridium species, these were characterized by a high degree of uniformity, which allowed a precise determination of the species involved in the replacement, for example, of one CO ligand of each Ir(CO)2 complex with ethylene. The supported species include the following: Ir(CO)2, Ir(CO)(C2H4)2, Ir(CO)(C2H4), Ir(CO)(C2H5), and (tentatively) Ir(CO)(H). The data determine a reaction network involving all of these species.  相似文献   

12.
Synthesis, Structure, and Photochemical Behavior of Olefine Iridium(I) Complexes with Acetylacetonato Ligands The bis(ethene) complex [Ir(κ2‐acac)(C2H4)2] ( 1 ) reacts with tertiary phosphanes to give the monosubstitution products [Ir(κ2‐acac)(C2H4)(PR3)] ( 2 – 5 ). While 2 (R = iPr) is inert toward PiPr3, the reaction of 2 with diphenylacetylene affords the π‐alkyne complex [Ir(κ2‐acac)(C2Ph2)(PiPr3)] ( 6 ). Treatment of [IrCl(C2H4)4] with C‐functionalized acetylacetonates yields the compounds [Ir(κ2‐acacR1,2)(C2H4)2] ( 8 , 9 ), which react with PiPr3 to give [Ir(κ2‐acacR1,2)(C2H4)(PiPr3)] ( 10 , 11 ) by displacement of one ethene ligand. UV irradiation of 5 (PR3 = iPr2PCH2CO2Me) and 11 (R2 = (CH2)3CO2Me) leads, after addition of PiPr3, to the formation of the hydrido(vinyl)iridium(III) complexes 7 and 12 . The reaction of 2 with the ethene derivatives CH2=CHR (R = CN, OC(O)Me, C(O)Me) affords the compounds [Ir(κ2‐acac)(CH2=CHR)(PiPr3)] ( 13 – 15 ), which on photolysis in the presence of PiPr3 also undergo an intramolecular C–H activation. In contrast, the analogous complexes [Ir(κ2‐acac)(olefin)(PiPr3)] (olefin = (E)‐C2H2(CO2Me)2 16 , (Z)‐C2H2(CO2Me)2 17 ) are photochemically inert.  相似文献   

13.
Cyclometalated IrIII complexes with acetylide ppy and bpy ligands were prepared (ppy=2‐phenylpyridine, bpy=2,2′‐bipyridine) in which naphthal ( Ir‐2 ) and naphthalimide (NI) were attached onto the ppy ( Ir‐3 ) and bpy ligands ( Ir‐4 ) through acetylide bonds. [Ir(ppy)3] ( Ir‐1 ) was also prepared as a model complex. Room‐temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir‐3 and Ir‐4 showed strong absorption in the visible range (ε=39600 M ?1 cm?1 at 402 nm and ε=25100 M ?1 cm?1 at 404 nm, respectively), long‐lived triplet excited states (τT=9.30 μs and 16.45 μs) and room‐temperature red emission (λem=640 nm, Φp=1.4 % and λem=627 nm, Φp=0.3 %; cf. Ir‐1 : ε=16600 M ?1 cm?1 at 382 nm, τem=1.16 μs, Φp=72.6 %). Ir‐3 was strongly phosphorescent in non‐polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir‐4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non‐polar solvents. Emission of Ir‐1 and Ir‐2 was not solvent‐polarity‐dependent. The T1 excited states of Ir‐2 , Ir‐3 , and Ir‐4 were identified as mainly intraligand triplet excited states (3IL) by their small thermally induced Stokes shifts (ΔEs), nanosecond time‐resolved transient difference absorption spectroscopy, and spin‐density analysis. The complexes were used as triplet photosensitizers for triplet‐triplet annihilation (TTA) upconversion and quantum yields of 7.1 % and 14.4 % were observed for Ir‐2 and Ir‐3 , respectively, whereas the upconversion was negligible for Ir‐1 and Ir‐4 . These results will be useful for designing visible‐light‐harvesting transition‐metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc.  相似文献   

14.
The synthesis and characterisation of a series of new Rh and Au complexes bearing 1,2,4‐triazol‐3‐ylidenes with a N‐2,4‐dinitrophenyl (N‐DNP) substituent are described. IR, NMR, single‐crystal X‐ray diffraction and computational analyses of the Rh complexes revealed that the N‐heterocyclic carbenes (NHCs) behaved as strong π acceptors and weak σ donors. In particular, a natural bond orbital (NBO) analysis revealed that the contributions of the Rh→Ccarbene π backbonding interaction energies (ΔEbb) to the bond dissociation energies (BDE) of the Rh? Ccarbene bond for [RhCl(NHC)(cod)] (cod=1,5‐cyclooctadiene) reached up to 63 %. The Au complex exhibited superior catalytic activity in the intermolecular hydroalkoxylation of cyclohexene with 2‐methoxyethanol. The NBO analysis suggested that the high catalytic activity of the AuI complex resulted from the enhanced π acidity of the Au atom.  相似文献   

15.
High yielding syntheses of 1‐(ferrocenylmethyl)‐3‐mesitylimidazolium iodide ( 1 ) and 1‐(ferrocenylmethyl)‐3‐mesitylimidazol‐2‐ylidene ( 2 ) were developed. Complexation of 2 to [{Ir(cod)Cl}2] (cod=cis,cis‐1,5‐cyclooctadiene) or [Ru(PCy3)Cl2(?CH‐o‐O‐iPrC6H4)] (Cy=cyclohexyl) afforded 3 ([Ir( 2 )(cod)Cl]) and 5 ([Ru( 2 )Cl2(?CH‐o‐O‐iPrC6H4)]), respectively. Complex 4 ([Ir( 2 )(CO)2Cl]) was obtained by bubbling carbon monoxide through a solution of 3 in CH2Cl2. Spectroelectrochemical IR analysis of 4 revealed that the oxidation of the ferrocene moiety in 2 significantly reduced the electron‐donating ability of the N‐heterocyclic carbene ligand (ΔTEP=9 cm?1; TEP=Tolman electronic parameter). The oxidation of 5 with [Fe(η5‐C5H4COMe)Cp][BF4] as well as the subsequent reduction of the corresponding product [ 5 ][BF4] with decamethylferrocene (Fc*) each proceeded in greater than 95 % yield. Mössbauer, UV/Vis and EPR spectroscopy analysis confirmed that [ 5 ][BF4] contained a ferrocenium species, indicating that the iron center was selectively oxidized over the ruthenium center. Complexes 5 and [ 5 ][BF4] were found to catalyze the ring‐closing metathesis (RCM) of diethyl diallylmalonate with observed pseudo‐first‐order rate constants (kobs) of 3.1×10?4 and 1.2×10?5 s?1, respectively. By adding suitable oxidants or reductants over the course of a RCM reaction, complex 5 was switched between different states of catalytic activity. A second‐generation N‐heterocyclic carbene that featured a 1′,2′,3′,4′,5′‐ pentamethylferrocenyl moiety ( 10 ) was also prepared and metal complexes containing this ligand were found to undergo iron‐centered oxidations at lower potentials than analogous complexes supported by 2 (0.30–0.36 V vs. 0.56–0.62 V, respectively). Redox switching experiments using [Ru( 10 )Cl2(?CH‐o‐O‐iPrC6H4)] revealed that greater than 94 % of the initial catalytic activity was restored after an oxidation–reduction cycle.  相似文献   

16.
A novel, mild and facile preparation of alkyl amides from unactivated alkyl iodides employing a fac‐Ir(ppy)3‐catalyzed radical aminocarbonylation protocol has been developed. Using a two‐chambered system, alkyl iodides, fac‐Ir(ppy)3, amines, reductants, and CO gas (released ex situ from Mo(CO)6), were combined and subjected to an initial radical reductive dehalogenation generating alkyl radicals, and a subsequent aminocarbonylation with amines affording a wide range of alkyl amides in moderate to excellent yields.  相似文献   

17.
Si?F bond cleavage of fluoro‐silanes was achieved by transition‐metal complexes under mild and neutral conditions. The Iridium‐hydride complex [Ir(H)(CO)(PPh3)3] was found to readily break the Si?F bond of the diphosphine‐ difluorosilane {(o‐Ph2P)C6H4}2Si(F)2 to afford a silyl complex [{[o‐(iPh2P)C6H4]2(F)Si}Ir(CO)(PPh3)] and HF. Density functional theory calculations disclose a reaction mechanism in which a hypervalent silicon species with a dative Ir→Si interaction plays a crucial role. The Ir→Si interaction changes the character of the H on the Ir from hydridic to protic, and makes the F on Si more anionic, leading to the formation of Hδ+???Fδ? interaction. Then the Si?F and Ir?H bonds are readily broken to afford the silyl complex and HF through σ‐bond metathesis. Furthermore, the analogous rhodium complex [Rh(H)(CO)(PPh3)3] was found to promote the cleavage of the Si?F bond of the triphosphine‐monofluorosilane {(o‐Ph2P)C6H4}3Si(F) even at ambient temperature.  相似文献   

18.
The amino substituted bidentate chelating ligand 2‐amino‐5‐(2‐pyridyl)‐1,3,4‐thiadiazole (H2 L ) was used to prepare 3:1‐type coordination compounds of iron(II), cobalt(II) and nickel(II). In the iron(II) perchlorate complex [FeII(H2 L )3](ClO4)2·0.6MeOH·0.9H2O a 1:1 mixture of mer and fac isomers is present whereas [FeII(H2 L )3](BF4)2·MeOH·H2O, [CoII(H2 L )3](ClO4)2·2H2O and [NiII(H2 L )3](ClO4)2·MeOH·H2O feature merely mer derivatives. Moessbauer spectroscopy and variable temperature magnetic measurements revealed the [FeII(H2 L )3]2+ complex core to exist in the low‐spin state, whereas the [CoII(H2 L )3]2+ complex core resides in its high‐spin state, even at very low temperatures.  相似文献   

19.
A series of [(C^N)2Ir(acac)] complexes [{5‐(2‐R‐CB)ppy}2Ir(acac)] ( 3 a – 3 g ; acac=acetylacetonate, CB=o‐carboran‐1‐yl, ppy=2‐phenylpyridine; R=H ( 3 a ), Me ( 3 b ), iPr ( 3 c ), iBu ( 3 d ), Ph ( 3 e ), CF3C6H4 ( 3 f ), C6F5 ( 3 g )) with various 2‐R‐substituted o‐carboranes at the 5‐position in the phenyl ring of the ppy ligand were prepared. X‐ray diffraction studies revealed that the carboranyl C?C bond length increases with increasing steric and electron‐withdrawing effects from the 2‐R substituents. Although the absorption and emission wavelengths of the complexes are almost invariant to the change of 2‐R group, the phosphorescence quantum efficiency varies from highly emissive (ΦPL≈0.80 for R=H, alkyl) to poorly emissive (R=aryl) depending on the 2‐R group and the polarity of the medium. Theoretical studies suggest that 1) the almost nonemissive nature of the 2‐aryl‐substituted complexes is mainly attributable to the large contribution to the LUMO in the S1 excited state from an o‐carborane unit and 2) the variation in the C?C bond length between the S0 and T1 state structures increases with increasing steric (2‐alkyl) and electronic effects (2‐aryl) of the 2‐R substituent and the polarity of the solvent. The solution‐processed electroluminescence (EL) devices that incorporated 3 b and 3 d as emitters displayed higher performance than the device based on the parent [(ppy)2Ir(acac)] complex. Along with the high phosphorescence efficiency, the bulkiness of the 2‐R‐o‐carborane unit is shown to play an important role in improving device performance.  相似文献   

20.
This article deals with isomeric ruthenium complexes [RuIII(LR)2(acac)] (S=1/2) involving unsymmetric β‐ketoiminates (AcNac) (LR=R‐AcNac, R=H ( 1 ), Cl ( 2 ), OMe ( 3 ); acac=acetylacetonate) [R=para‐substituents (H, Cl, OMe) of N‐bearing aryl group]. The isomeric identities of the complexes, cct (ciscis‐trans, blue, a ), ctc (cis‐trans‐cis, green, b ) and ccc (ciscis‐cis, pink, c ) with respect to oxygen (acac), oxygen (L) and nitrogen (L) donors, respectively, were authenticated by their single‐crystal X‐ray structures and spectroscopic/electrochemical features. One‐electron reversible oxidation and reduction processes of 1 – 3 led to the electronic formulations of [RuIII(L)(L ? )(acac)]+ and [RuII(L)2(acac)]? for 1 +‐ 3 + (S=1) and 1? – 3? (S=0), respectively. The triplet state of 1 +‐ 3 + was corroborated by its forbidden weak half‐field signal near g≈4.0 at 4 K, revealing the non‐innocent feature of L. Interestingly, among the three isomeric forms ( a – c in 1 – 3 ), the ctc ( b in 2 b or 3 b ) isomer selectively underwent oxidative functionalization at the central β‐carbon (C?H→C=O) of one of the L ligands in air, leading to the formation of diamagnetic [RuII(L)(L ′ )(acac)] (L ′ =diketoimine) in 4 / 4′ . Mechanistic aspects of the oxygenation process of AcNac in 2 b were also explored via kinetic and theoretical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号