首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel results on the selective self-ion/molecule reactions (SSIMR) in both external and internal source ion trap mass spectrometers are demonstrated. Selective self-ion/molecule reaction product ions were produced between the oxygenated and nitrogenated crown ethers. For the oxygenated crown ethers, self-ion/molecule reactions lead to the formation of the protonated ions, adduct ions of fragments ([M + F](+)) and [M + H(3)O](+), while the nitrogenated crown ethers produce [M + H](+), [M + CH](+) and [M + C(2)H(3)](+) ions.  相似文献   

2.
Our previous work was the first to report [M+CH](+) and [M+C(2)H(3)](+) ions in the self ion-molecule reactions (SIMR) of two aza-crown ethers in an ion trap mass spectrometer (ITMS). In this study, the CH and C(2)H(3) addition ions were also found in the SIMR of dopamine. The SIMR of dopamine lead to the formation of the protonated molecules ([M+H](+)), of adduct ions ([M+F](+), where F represents fragment ions), and of [M+CH](+), [M+C(2)H(3)](+) and [2M+H](+) ions. Based on the combination of the results of isolation experiments and semi-empirical calculations, the reactive site for the formation of the [M+H](+) and [M+CH](+) ions of dopamine is proposed to be the amino group.  相似文献   

3.
This study presents a novel, simple and rapid procedure for isomer differentiation by combining gas chromatography (GC), a selective self-ion/molecule reaction (SSIMR) and tandem mass spectrometry (MS/MS) in an ion trap mass spectrometer (ITMS). SSIMR product ions were produced from four isomers. For aniline, SSIMR induces the formation of the molecular ion, [M+H](+), [M+CH](+), adduct ions of fragments ([M+F](+), where F represents fragment ions) and [2M-H](+). 2 and 3-Picoline produce [M+H](+), [2M-H](+) and [M+F](+), while 5-hexynenitrile produces [M+H](+), [M+F](+) and [2M+H](+) ions. The proposed method provides a relatively easy, rapid and efficient means of isomer differentiation via a SSIMR in the ITMS. Typically, isomer differentiation can be achieved within several minutes. The superiority of the SSIMR technique for isomer differentiation over electronic ionization (EI) is also demonstrated.  相似文献   

4.
Fast atom bombardment mass spectrometry in the positive mode was used for the characterization of sodiated glycerol phosphatidylcholines. The relative abundance (RA) of the protonated species is similar to the RA of the sodiated molecular species. The sodiated fragment ion, [M + Na - 59](+), corresponding to the loss of trimethylamine, and other sodiated fragment ions, were also observed. The decomposition of the sodiated molecule is very similar for all the studied glycerol phosphatidylcholines, in which the most abundant ion corresponds to a neutral loss of 59 Da. Upon collision-induced dissociation (CID) of the [M + Na](+) ion informative ions are formed by the losses of the fatty acids in the sn-1 and sn-2 positions. Other major fragment ions of the sodiated molecule result from loss of non-sodiated and sodiated choline phosphate, [M + Na - 183](+), [M + Na - 184](+.) and [M + Na - 205](+), respectively. The main CID fragmentation pathway of the [M + Na - 59](+) ion yields the [M + Na - 183](+) ion, also observed in the CID spectra of the [M + Na](+) molecular ion. Other major fragment ions are [M + Na - 205](+) and the fragment ion at m/z 147. Collisional activation of [M + Na - 205](+) results in charge site remote fragmentation of both fatty acid alkyl chains. The terminal ions of these series of charge remote fragmentations result from loss of part of the R(1) or R(2) alkyl chain. Other major informative ions correspond to acylium ions.  相似文献   

5.
A reversed-phase high-performance liquid chromatography (HPLC) method with on-line electrospray ionization/collision-induced dissociation/mass spectrometry (ESI/CID/MS) is presented for the regiospecific analysis of synthetic reference compounds of neutral ether lipids. The reference compounds were characterized by chromatographic retention times, full mass spectra, and fragmentation patterns as an aid to clarify the regiospecificity of ether lipids from natural sources. The results clearly show that single quadrupole mass spectroscopic analysis may elucidate the regiospecific structure of neutral ether lipids. Ether lipid reference compounds were characterized by five to six major ions in the positive ion mode. The 1-O-alkyl-sn-glycerols were analyzed as the diacetoyl derivative, and showed the [M - acetoyl](+) ion as an important diagnostic ion. The diagnostic ions of directly analyzed 1-O-alkyl-2-acyl-sn-glycerols and 1-O-alkyl-3-acyl-sn-glycerols were the [M - alkyl](+), [M + H - H(2)O](+) and [M + H](+) ions. Regiospecific characterization of the fatty acid position was evident from the relative ion intensities, as the sn-2 species had relatively high [M + H](+) ion intensities compared with [M + H - H(2)O](+), whereas the reverse situation characterized the sn-3 species. Furthermore, corresponding sn-2 and sn-3 species were separated by the chromatographic system. However, loss of water was promoted as fatty acid unsaturation was raised, which may complicate interpretation of the mass spectra. The diagnostic ions of directly analyzed 1-O-alkyl-2,3-diacyl-sn-glycerols were the [M - alkyl](+), [M - sn-2-acyl](+) and [M - sn-3-acyl](+) ions. Regiospecific characterization of the fatty acid identity and position was evident from the relative ion intensities, as fragmentation of the sn-2 fatty acids was preferred to the sn-3 fatty acids; however, loss of fatty acids was also promoted by higher degrees of unsaturation. Therefore, both structural and positional effects of the fatty acids affect the spectra of the neutral ether lipids. Fragmentation patterns and optimal capillary exit voltages are suggested for each neutral ether lipid class. The present study demonstrates that reversed-phase HPLC and positive ion ESI/CID/MS provide direct and unambiguous information about the configuration and identity of molecular species in neutral 1-O-alkyl-sn-glycerol classes.  相似文献   

6.
The structural determination of sn-1 and sn-2 hexadecanoic lysophosphatidylcholine (LPC) regioisomers was carried out using fast atom bombardment tandem mass spectrometry (FAB-MS/MS). The collision-induced dissociation (CID) of protonated and sodiated molecules produced diverse product ions due mainly to charge remote fragmentations. Based on the information obtained from the CID spectra of protonated and sodiated molecules, sn-1 and sn-2 hexadecanoic LPC isomers could be discriminated. Especially, the abundance ratio of the diagnostic ion pair [m/z 224/226] in the CID spectra of [M + H](+) ions was shown to be greatly different. Moreover, the CID-MS/MS spectra of sodium-adducted molecules for hexadecanoic LPC isomers showed characteristic product ions such as [M + Na - 103](+), [M + Na - 85](+), and [M + Na - 59](+), by which their regio-specificity can be differentiated.  相似文献   

7.
We describe tandem mass spectrometric approaches, including multiple stage ion-trap and source collisionally activated dissociation (CAD) tandem mass spectrometry with electrospray ionization (ESI) to characterize inositol phosphorylceramide (IPC) species seen as [M - H](-) and [M - 2H + Li](-) ions in the negative-ion mode as well as [M + H](+), [M + Li](+), and [M - H + 2Li](+) ions in the positive-ion mode. Following CAD in an ion-trap or a triple-stage quadrupole instrument, the [M - H](-) ions of IPC yielded fragment ions reflecting only the inositol and the fatty acyl substituent of the molecule. In contrast, the mass spectra from MS(3) of [M - H - Inositol](-) ions contained abundant ions that are readily applicable for assignment of the fatty acid and long-chain base (LCB) moieties. Both the product-ion spectra from MS(2) and MS(3) of the [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) ions also contained rich fragment ions informative for unambiguous assignment of the fatty acyl substituent and the LCB. However, the sensitivity of the ions observed in the forms of [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) (Alk = Li, Na) is nearly 10 times less than that observed in the [M - H](-) form. In addition to the major fragmentation pathways leading to elimination of the inositol or inositol monophosphate moiety, several structurally informative ions resulting from rearrangement processes were observed. The fragmentation processes are similar to those previously reported for ceramides. While the tandem mass spectrometric approach using MS(n) (n = 2, 3) permits the structures of the Leishmania major IPCs consisting of two isomeric structures to be unveiled in detail, tandem mass spectra from constant neutral loss scans may provide a simple method for detecting IPC in mixtures.  相似文献   

8.
Gas-phase hydrogen-deuterium (H/D) exchange reactions involving four isomeric cyclopropane derivatives were investigated under chemical ionization (CI) conditions, using D(2)O and CD(3)OD as reagent gases. There are abundant ions at [M + 1](+), [M + 2](+) and [M + 3](+) in the D(2)O and CD(3)OD positive-ion CI mass spectra of the two isomer pairs 1, 2 and 3, 4. Their CI mass spectra are identical with each pair, and so are the collision-induced dissociation (CID) spectra of ions [M + 1](+), [M + 2](+) and [M + 3](+) of each of the two isomer pairs. The CID spectra of [M + 1](+) ions indicate that they have common D/H exchange reactions within each pair, which take place between molecular ions and deuterium-labeling reagents to form the [M - H + D](+) ions. Those of their [M + 2](+) ions show that they have common D/H exchange reactions within each pair, which form the [M(d1) + H](+) ions. Those of their [M + 3](+) ions show that they have common D/H exchange reactions within each pair, which take place between the [M(d1)] and deuterium-labeling reagents to produce [M(d2) + H](+) for the isomer pair 1, 2 and [M(d1) + D](+) for the isomer pair 3, 4. The number and position, and active order of the active hydrogen atoms of the isomer pairs 1, 2 and 3, 4 were determined. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

9.
A novel plasmal conjugate of galactosylsphingosine (psychosine), Gro1(3)-O-plasmal-O-6Galbeta-sphingosine (glyceroplasmalopsychosine), was analyzed by electrospray ionization and liquid secondary ion mass spectrometry with low- or high-energy collision-induced dissociation (CID). In the product ion spectra of the [M + H](+) ions, [M + H - glycerol](+) ions arising from the loss of a glycerol were predominant. Unexpectedly, CID of the [M + H - glycerol](+) ion produced an outstanding ion, [(M + H - glycerol) - Hex](+), which required the loss of the galactose from inside the molecule. This ion was greatly reduced in the spectra of N,N-dimethyl derivatives, indicating that the [(M + H - glycerol) - Hex](+) ion is formed from an intramolecular rearrangement with migration of the plasmal residue to the free amino group of sphingosine. It would be expected that the rearrangement occurs simultaneously with the elimination of glycerol or a rearranged [M + H](+) ion leads to the elimination of glycerol, to form a Schiff base-type [M + H - glycerol](+) ion, from which the terminal galactose could be removed by the normal mechanism of glycosidic cleavage. On the other hand, the [M + Na - glycerol](+) ion derived from the sodiated molecule did not produce an ion corresponding to the rearrangement reaction, possibly owing to a higher stability of the sodiated ions against conformational changes.  相似文献   

10.
The dissociation reactions of the adduct ions derived from the four self-complementary deoxydinucleotides, d(ApT), d(TpA), d(CpG), d(GpC), and alkali-metal ions were studied in detail by positive ion electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)). For the [M + H](+) ions of the four deoxydinucleotides, elimination of 5'-terminus base or loss of both of 5'-terminus base and a deoxyribose were the major dissociation pathway. The ESI-MS(n) spectra showed that Li(+), Na(+), and Cs(+) bind to deoxydinucleotides mainly by substituting the H(+) of phosphate group, and these alkali-metal ions preferred to bind to pyrimidine bases rather than purine bases. For a given deoxydinucleotide, the dissociation pathway of [M + K](+) ions differed clearly from that of [M + Li](+), [M + Na](+), and [M + Cs](+) ions. Some interesting and characteristic cleavage reactions were observed in the product-ion spectra of [M + K](+) ions, including direct elimination of deoxyribose and HPO(3) from molecular ions. The fragmentation behavior of the [M + K](+) and [M + W](+) (W = Li, Na, Cs) adduct ions depend upon the sequence of bases, the interaction between alkali-metal ions and nucleobases, and the steric hindrance caused by bases.  相似文献   

11.
Liquid secondary ion (LSI) mass spectra of ion-pair precipitates obtained for Triton X-100 with strontium, lead, cadmium and mercury tetraphenylborates and for selected butoxylene-ethoxylene monoalkyl ethers with barium tetraiodobismuthate(III) are discussed. On the basis of LSI mass spectra, recorded in both positive and negative modes, the formulae of the ion-pair precipitates were determined. On the basis of B/E mass spectra, the fragmentation routes of [M - H + Ba](+) ions for butoxylene-ethoxylene monoalkyl ether complexes of barium and [M - H + Cd](+) ions for the Triton X-100 complex of cadmium are proposed.  相似文献   

12.
Some ion-formation processes during fast atom bombardment (FAB) are discussed, especially the possibility of reactions in the gas phase. Divided (two halves) FAB probe tips were used for introducing two different samples into the source at the same time. Our results showed [M + A]+ ions (where M = crown ethers and A = alkali metal ions), can be produced, at least in part, in the gas phase when crown ethers and sources of alkali metal ion are placed on two halves of the FAB probe tip. The extent of this ion formation depends on the volatility of the crown ether and on steric factors. Cluster ions such as (M + LiCl)Li+, (2M + LiCl)Li+, [2M + K]+ and [2M + Na]+ are also observed to form in the gas phase. Unimolecular decompositions contribute to some ions detected in FAB. When the alkali ion salt and the crown ether are mixed together the probability of [M + A]+ ion formation increases significantly, regardless of the volatility of the crown ether.  相似文献   

13.
The Claisen rearrangement is a well-known process occurring in condensed phase. In the gas-phase protonated allyl phenyl ethers, propargyl phenyl ethers, and N-allyl aniline produced by positive ion chemical ionization undergo Claisen rearrangement. This reaction has been observed even in the case of odd-electron molecular ions. Phenyl allenyl ether molecular ions actually undergo Claisen rearrangement, producing intense [M - CO](+*) ions. In this investigation, the behavior of protonated benzyloxy indole and some of its derivatives, obtained in electrospray conditions, is described. Low-energy MS/MS experiments carried out on [M + H](+) species show CO loss and an unexpected water loss: both can be justified only by the occurrence of Claisen rearrangement. Deuterium labeling experiments confirm this mechanism. The influence of different substituents in the indole moiety is discussed.  相似文献   

14.
It has been described that ion yield in both positive- and negative-ion matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of peptides is often inhibited by trace amounts of alkali metals and that the MALDI mass spectra are contaminated by the interfering peaks originating from traces of alkali metals, even when sample preparation is carefully performed. Addition of serine to the commonly used MALDI matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) significantly improved and enhanced the signals of both protonated and deprotonated peptides, [M+H](+) and [M-H](-). The addition of serine to CHCA matrix eliminated the alkali-metal ion adducts, [M+Na](+) and [M+K](+), and the CHCA cluster ions from the mass spectra. Serine and serinephosphate as additives to CHCA enhanced and improved the formation of molecular-related ions of phosphopeptides in negative-ion MALDI mass spectra.  相似文献   

15.
A rapid and stable high-performance liquid chromatography-diode array detection (HPLC-DAD) and a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI/MS/MS) method were developed and validated for the separation, determination, and identification of eight pairs of diastereoisomers of podophyllotoxin and its esters at C-2 position. The separation was carried out on BDS Hypersil C18 column with CH3OH-CH3CN-H2O as the mobile phase in a gradient program. Interestingly, every 2alpha-H compound migrated before its corresponding 2beta-H epimer under optimum conditions. Also, the [M+NH(4)](+) of all eight pairs of compounds was observed in the HPLC-ESI/MS spectra. The characteristic elimination from the precursor protonated ions and the product ions at m/z 397, 313, 282, and 229 were the common diagnostic masses. The ion ratios of relative abundance [M-ROH+H](+) (ion 397) to [M+NH(4)](+), [A+H](+) (ion 313) to [M-ROH+H](+), and [M-ROH-ArH+H](+) (ion 229) to [M-ROH+H](+) in the ESI/MS/MS spectra of each pair of diastereoisomers of the lignans specifically exhibited a stereochemical effect. Thus, by using identical sample solutions and chromatographic conditions (including the same columns and gradient programs), the combination of DAD and MS/MS data permitted the separation and identification of the eight pairs of diastereoisomers of the podophyllotoxin and its esters in the mixture. The method could be used in rapidly identifying the purity and monitoring of the epimerization of 2-H of podophyllotoxin and its analogues from natural products, chemical reactions, and pharmaceutical metabolism.  相似文献   

16.
ESI and CID mass spectra were obtained for four pyrimidine nucleoside antiviral agents and the corresponding compounds in which the labile hydrogens were replaced by deuterium using gas-phase exchange. The number of labile hydrogens, x, was determined from a comparison of ESI spectra obtained with N(2) and with ND(3) as the nebulizer gas. CID mass spectra were obtained for [M + H](+) and [M - H](-) ions and the exchanged analogs, [M(D(x)) + D](+) and [M(D(x)) - D](-), produced by ESI using a SCIEX API-III(plus) mass spectrometer. Protonated pyrimidine antiviral agents dissociate through rearrangement decompositions of base-protonated [M + H](+) ions by cleavage of the glycosidic bonds to give the protonated bases with a sugar moiety as the neutral fragment. Cleavage of the glycosidic bonds with charge retention on the sugar moiety eliminates the base moiety as a neutral molecule and produces characteristic sugar ions. CID of protonated pyrimidine bases, [B + H](+), occurs through three major pathways: (1) elimination of NH(3) (ND(3)), (2) loss of H(2)O (D(2)O), and (3) elimination of HNCO (DNCO). Protonated trifluoromethyl uracil, however, dissociates primarily through elimination of HF followed by the loss of HNCO. CID mass spectra of [M - H](-) ions of all four antiviral agents show NCO(-) as the principal decomposition product. A small amount of deprotonated base is also observed, but no sugar ions. Elimination of HNCO, HN(3), HF, CO, and formation of iodide ion are minor dissociation pathways from [M - H](-) ions.  相似文献   

17.
A series of meso-dialkyl, alkyl aryl and cycloalkyl calix(4)pyrroles (1-15) are studied under positive and negative ion electrospray ionization (ESI) conditions. The positive ion spectra show abundant [M + H](+) and [M + Na](+) ions and the negative ion spectra show the [M + Cl](-) (the Cl(-) ions from the solvent) and [M - H](-) ions. The collision induced dissociation (CID) spectra of [M + H](+), [M + Na](+), [M + Cl](-) and [M - H](-) ions are studied to understand their dissociation pathway and compared to that reported for M(+) under electron ionization (EI) conditions. The beta-cleavage process that was diagnostic to M(+) is absent in all the CID spectra of the ions studied under ESI. Dissociation of all the studied ions resulted in the fragment ions formed by sequential elimination of pyrrole (A) and/or dialkyl/alkyl aryl/cycloalkyl (B) groups involving hydrogen migration to pyrrole ring at each cleavage of A--B bond, which clearly reveals the arrangement of A and B groups in the calix(4)pyrroles. The source of hydrogen that migrates to pyrrole ring during A--B bond cleavage is investigated by the experiments on deuterated compounds and [M + D](+) ions; and confirmed that the hydrogen attached to pyrrole nitrogen, hydrogen on alpha-carbon of alkyl group and the H(+)/Na(+) ion that added during ESI process to generate [M + H](+)/[M + Na](+) ions involve in the migration. The yields of [M + Na](+) ions are found to be different for the isomeric meso-cycloalkyl compounds (cycloheptyl, and 2-, 3- and 4-methyl cyclohexyl) and for normal and N-confused calix(4)pyrroles. The isomeric methyl and 3-hydroxy/4-hydroxy phenyl calix(4)pyrroles show specific fragmentation pattern during the dissociation of their [M - H](-) ions.  相似文献   

18.
A series of lysophosphatidylcholines were isolated from the marine sponge Spirastrella abata by reversed-phase high performance liquid chromatography (HPLC) and analyzed by fast atom bombardment mass spectrometry (FAB-MS). Their structural elucidation was carried out with fast atom bombardment tandem mass spectrometry (FAB-MS/MS). The collision-induced dissociation (CID) of protonated and sodiated molecular ions produced diverse product ions via a series of dissociative processes. Because of the positive charge of the amine group at the end of the molecules, charge-remote fragmentation patterns of specific ions, [M + H](+) or [M + Na](+), were very helpful for the identification of product ions which are characteristic for choline and long hydrocarbon chains substituted at the glycerol back bone. Moreover, the CID-MS/MS spectra of sodium adducted molecular ions for lysophosphatidylcholines yielded common characteristic fragment ions for the choline moiety and characteristic ions [M + Na-103](+), [M + Na-85](+) and [M + Na-59](+) in the higher mass region.  相似文献   

19.
Electrospray ionization mass spectrometry of ginsenosides   总被引:1,自引:0,他引:1  
Ginsenosides R(b1), R(b2), R(c), R(d), R(e), R(f), R(g1), R(g2) and F(11) were studied systematically by electrospray ionization mass spectrometry in positive- and negative-ion modes with a mobile-phase additive, ammonium acetate. In general, ion sensitivities for the ginsenosides were greater in the negative-ion mode, but more structural information on the ginsenosides was obtained in the positive-ion mode. [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions were observed for all of the ginsenosides studied, with the exception of R(f) and F(11), for which [M + NH(4)](+) ions were not observed. The signal intensities of [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions varied with the cone voltage. The highest signal intensities for [M + H](+) and [M + NH(4)](+) ions were obtained at low cone voltage (15-30 V), whereas those for [M + Na](+) and [M + K](+) ions were obtained at relatively high cone voltage (70-90 V). Collision-induced dissociation yielded characteristic positively charged fragment ions at m/z 407, 425 and 443 for (20S)-protopanaxadiol, m/z 405, 423 and 441 for (20S)-protopanaxatriol and m/z 421, 439, 457 and 475 for (24R)-pseudoginsenoside F(11). Ginsenoside types were identified by these characteristic ions and the charged saccharide groups. Glycosidic bond cleavage and elimination of H(2)O were the two major fragmentation pathways observed in the product ion mass spectra of [M + H](+) and [M + NH(4)](+). In the product ion mass spectra of [M - H](-), the major fragmentation route observed was glycosidic bond cleavage. Adduct ions [M + 2AcO + Na](-), [M + AcO](-), [M - CH(2)O + AcO](-), [M + 2AcO](2-), [M - H + AcO](2-) and [M - 2H](2-) were observed at low cone voltage (15-30 V) only.  相似文献   

20.
The interplay of proton transfer and hydride transfer reactions in alkylbenzenium ions and related protonated di- and oligophenylalkanes is presented and discussed. While intra- and interannular proton exchange has been recognised to be an ubiquitous feature in protonated arenes, hydride abstraction is much less obvious but can become a dominating fragmentation channel in metastable ions of tert-butyl-substituted alkylbenzenium ions and related carbocations. In such cases, proton-induced release of the tert-butyl cation gives rise to ion/neutral complexes as reactive intermediates, for example, [(CH(3))(3)C(+)...arylCH(2)(α)(CH(2))(n)CH(2)(ω)aryl '] with n ≥ 0, and highly regioselective intra-complex hydride transfer occurs from all of the benzylic methylene hydride ion donor groups (α-CH(2) and ω-CH(2)) to the tert-butyl cation acting as a Lewis acid. Substituent effects on the individual contributions to the overall hydride transfer from different donor sites, including ortho-methyl groups, in particular, and the concomitant intra- complex proton transfer from the tert-butyl cation to the neutral diarylalkane constituent corroborate the view of "bisolvated" complexes as the central intermediates, in which the carbenium ion is coordinated to both of the aromatic π-electron systems. The role of cyclisation processes converting the benzylic, [M - H](+) type, ions into the isomeric benzenium, [M + H](+)-type, ions prior to fragmentation is demonstrated for several cases. This overall scenario, consisting of consecutive and/or competing intra-complex hydride abstraction and proton transfer, intraannular proton shifts (H+ ring walk) and interannular proton transfer, hydrogen exchange ("scrambling") processes, and cyclisation and other electrophilic substitution reactions, is of general importance in this field of gas-phase ion chemistry, and more recent examples concerning protonated ethers, benzylpyridinium and benzylammmonium ions are discussed in which these recurring features play central and concerted mechanistic roles as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号