首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of the In-mole fraction (x) of an InxGa1−xN back barrier layer and the thicknesses of different layers in pseudomorphic AlyGa1−yN/AlN/GaN/InxGa1−xN/GaN heterostructures on band structures and carrier densities were investigated with the help of one-dimensional self-consistent solutions of non-linear Schrödinger-Poisson equations. Strain relaxation limits were also calculated for the investigated AlyGa1−yN barrier layer and InxGa1−xN back barriers. From an experimental point of view, two different optimized structures are suggested, and the possible effects on carrier density and mobility are discussed.  相似文献   

2.
The electronic and structural properties of zigzag aluminum nitride (AlN), gallium nitride (GaN) nanoribbons and AlxGa1−xN nanoribbon heterojunctions are investigated using the first-principles calculations. Both AlN and GaN ribbons are found to be semiconductor with an indirect band gap, which decreases monotonically with the increased ribbon width, and approaching to the gaps of their infinite two dimensional graphitic-like monolayer structures, respectively. Furthermore, the band gap of AlxGa1−xN nanoribbon heterojunctions is closely related to Al (and/or Ga) concentrations. The AlxGa1−xN nanoribbon of width n=8 shows a continuously band gap varying from about 2.2 eV-3.1 eV as x increases from 0 to 1. The large ranged tunable band gaps in such a quasi one dimension structure may open up new opportunities for these AlN/GaN based materials in future optoelectronic devices.  相似文献   

3.
Semiconductor optoelectronic devices based on GaN and on InGaN or AlGaN alloys and superlattices can operate in a wide range of wavelengths, from far infrared to near ultraviolet region. The efficiency of these devices could be enhanced by shrinking the size and increasing the density of the semiconductor components. Nanostructured materials are natural candidates to fulfill these requirements. Here we use the density functional theory to study the electronic and structural properties of (10,0) GaN, AlN, AlxGa1 − xN nanotubes and GaN/AlxGa1 − xN heterojunctions, 0<x<1. The AlxGa1 − xN nanotubes exhibit direct band gaps for the whole range of Al compositions, with band gaps varying from 3.45 to 4.85 eV, and a negative band gap bowing coefficient of −0.14 eV. The GaN/AlxGa1 − xN nanotube heterojunctions show a type-I band alignment, with the valence band offsets showing a non-linear dependence with the Al content in the nanotube alloy. The results show the possibility of engineering the band gaps and band offsets of these III-nitrides nanotubes by alloying on the cation sites.  相似文献   

4.
The Shubnikov-de Haas (S-dH) results at 1.5 K for AlxGa1−xN/AlN/GaN heterostructures and the fast Fourier transformation data for the S-dH data indicated the occupation by a two-dimensional electron gas (2DEG) of one subband in the GaN active layer. Photoluminescence (PL) spectra showed a broad PL emission about 30 meV below the GaN exciton emission peak at 3.474 eV that could be attributed to recombination between the 2DEG occupying in the AlN/GaN heterointerface and photoexcited holes. A possible subband structure was calculated by a self-consistent method taking into account the spontaneous and piezoelectric polarizations, and one subband was occupied by 2DEG below the Fermi level, which was in reasonable agreement with the S-dH results. These results can help improve understanding of magnetotransport, optical, and electronic subband properties in AlxGa1−xAs/AlN/GaN heterostructures.  相似文献   

5.
AlN with different thicknesses were grown as interlayers (ILs) between GaN and p-type Al0.15Ga0.85N/GaN superlattices (SLs) by metal organic vapor phase epitaxy (MOVPE). It was found that the edge-type threading dislocation density (TDD) increased gradually from the minimum of 2.5×109?cm?2 without AlN IL to the maximum of 1×1010?cm?2 at an AlN thickness of 20 nm, while the screw-type TDD remained almost unchanged due to the interface-related TD suppression and regeneration mechanism. We obtained that the edge-type dislocations acted as acceptors in p-type Al x Ga1?x N/GaN SLs, through the comparison of the edge-type TDD and hole concentration with different thicknesses of AlN IL. The Mg activation energy was significantly decreased from 153 to 70?meV with a?10-nm AlN IL, which was attributed to the strain modulation between AlGaN barrier and GaN well. The large activation efficiency, together with the TDs, led to the enhanced hole concentration. The variation trend of Hall mobility was also observed, which originated from the scattering at TDs.  相似文献   

6.
We investigate the structural and electrical properties of AlxIn1xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested AlxIn1?xN/AlN/GaN/Al0.04Ga0.96N heterostructures when compared to the standard AlxIn1xN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al0.04Ga0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the AlxIn1?xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible.  相似文献   

7.
Effects of the passivation of SiNx on the high temperature transport characteristics of the two-dimensional electron gas (2DEG) in unintentionally doped AlxGa1−xN/GaN heterostructures have been investigated by means of high temperature Hall measurements. The 2DEG density increases much after SiNx passivation, and the increment is proportional to the Si content in SiNx layer, indicating that the increment is mainly caused by ionized Si atoms at the SiN/AlxGa1−xN interface with dangling bonds or by Si atoms incorporated into the AlxGa1−xN layer during the SiNx growth, which is approved by strain analysis and X-ray photoemission spectroscopy (XPS). There is lower 2DEG mobility at room temperature in a passivated sample than in an unpassivated one. However, the 2DEG mobility becomes to be higher in a passivated sample than in an unpassivated one when the temperature is above 250 °C, which is suggested to be caused by different subband occupation ratios in the triangular quantum well at the heterointerface before and after passivation.  相似文献   

8.
宋杰  许福军  黄呈橙  林芳  王新强  杨志坚  沈波 《中国物理 B》2011,20(5):57305-057305
The temperature dependence of carrier transport properties of AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures has been investigated.It is shown that the Hall mobility in Al0.25Ga0.75N/In0.03Ga0.97N/GaN heterostructures is higher than that in Al0.25Ga0.75N/GaN heterostructures at temperatures above 500 K,even the mobility in the former is much lower than that in the latter at 300 K.More importantly,the electron sheet density in Al0.25Ga0.75N/In0.03Ga0.97N/GaN heterostructures decreases slightly,whereas the electron sheet density in Al0.25Ga0.75N/GaN heterostructures gradually increases with increasing temperature above 500 K.It is believed that an electron depletion layer is formed due to the negative polarization charges at the InyGa1-yN/GaN heterointerface induced by the compressive strain in the InyGa1-yN channel,which e-ectively suppresses the parallel conductivity originating from the thermal excitation in the underlying GaN layer at high temperatures.  相似文献   

9.
We have performed a first-principle Full Potential Linearized Augmented Plane Waves calculation within the local density approximation (LDA) to the zinc-blende AlxGa1−xAs1−yNy to predict its optical properties as a function of N and Al mole fractions. The accurate calculations of electronic properties such as band structures and optical properties like refractive index, reflectivity and absorption coefficient of AlxGa1−xAs and AlxGa1−xAs1−yNy with x≤0.375 and y up to 4% are presented. AlxGa1−xAs on GaAs have a lattice mismatch less than 0.16% and the lattice constant of AlxGa1−xAs has a derivation parameter of 0.0113±0.0024. The band gap energies are calculated by LDA and the band anticrossing model using a matrix element of CMN=2.32 and a N level of EN=(1.625+0.069x) eV. The results show that AlxGa1−xAs can be very useful as a barrier layer in separate confinement heterostructure lasers and indicate that the best choice of x and y AlxGa1−xAs1−yNy could be an alternative to AlxGa1−xAs when utilized as active layers in quantum well lasers and high-efficiency solar cell structures.  相似文献   

10.
We show that the large band offsets between GaN and InN and the heavy carrier effective masses preclude the use of the virtual crystal approximation to describe the electronic structure of Ga1−xInxN/GaN heterostructures, while this approximation works very well for the Ga1−xInxAs/GaAs heterostructures.  相似文献   

11.
In order to design the optimal component structure of transmission-mode (t-mode) Ga1−xAlxN photocathode, the optical properties and quantum efficiency of Ga1−xAlxN photocathodes are simulated. Based on thin film principle, optical model of t-mode Ga1−xAlxN photocathodes is built. And the quantum efficiency formula is put forward. Results show that Ga1−xAlxN photocathodes can satisfy the need of detectors with “solar blind” property when the Al component is bigger than 0.375. There is an optimal thickness of Ga1−xAlxN layer to get highest quantum efficiency, and the optimal thickness is 0.3 μm. There is close relation between absorptivity and quantum efficiency, which is in good agreement with the “three-step” model. This work gives a reference for the experimental research on the Ga1−xAlxN photocathodes.  相似文献   

12.
The effect of Al mole fractions on the structural and electrical properties of AlxGa1−xN/GaN thin films grown by plasma-assisted molecular beam epitaxy (PA-MBE) on Si (1 1 1) substrates has been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage (I-V) measurements. X-ray results revealed that the AlGaN/GaN/AlN was epitaxially grown on Si substrate. By applying Vegard's law, the Al mole fractions of AlxGa1−xN samples were found to be 0.11, 0.24, 0.30 and 0.43, respectively. The structural and morphology results indicated that there is a relatively larger tensile strain for the sample with the smallest Al mole fraction; while a smaller compressive strain and larger grain size appear with Al mole fraction equal to 0.30. The strain gets relaxed with the highest Al mole fraction sample. Finally, the linear relationship between the barrier height and Al mole fraction was obtained.  相似文献   

13.
The dependence of two-dimensional electron gas (2DEG) density and distribution in an AlxGa1-xN/AlN/GaN heterostructure on the thicknesses of the AlxGa1-xN barrier layer and the AlN interfacial layer are investigated theoretically. A competitive contribution of the AlGaN and AlN layers to the 2DEG density is revealed. For an AlN interfacial layer thinner than a critical value dcAlN, the 2DEG density is dominated by the AlGaN barrier and the 2DEG density increases with the increase of the AlGaN barrier thickness, as in the case of a simple AlGaN/GaN heterostructure. While the AlN interfacial layer will take the dominant contribution to the 2DEG density as its thickness exceeds dcAlN. In this case, the increase of AlGaN barrier layer thickness leads to the decrease of the 2DEG density. Detailed calculations show that the critical AlN thickness increases with the increase of Al content in the AlGaN barrier. PACS 85.30.De; 73.40.Kp; 02.60.Cb  相似文献   

14.
(Ga1−xMnx)N/GaN digital ferromagnetic heterostructures (DFHs) and (Ga1−xMnx)N/GaN grown on GaN buffer layers by using molecular beam epitaxy have been investigated. The photoluminescence (PL) spectra showed band-edge exciton transitions. They also showed peaks corresponding to the neutral donor-bound exciton and the exciton transitions between the conduction band and the Mn acceptor, indicative of the Mn atoms acting as substitution. The magnetization curves as functions of the magnetic field at 5 K indicated that the saturation magnetic moment in the (Ga1−xMnx)N/GaN DFHs decreased with increasing Mn mole fraction and that the saturation magnetic moment and the coercive field in the (Ga1−xMnx)N/GaN DFHs were much larger than those in (Ga1−xMnx)N thin films. These results indicate that the (Ga1−xMnx)N/GaN DFHs hold promise for potential applications in spintronic devices.  相似文献   

15.
In this paper we present a study of the effect of GaN capping layer thickness on the two-dimensional (2D)-electron mobility and the two-dimensional electron gas (2DEG) sheet density which is formed near the AlGaN barrier/buffer GaN layer. This study is undertaken using a fully numerical calculation for GaN/AlxGa1−xN/GaN heterostructures with different Al mole fraction in the AlxGa1−xN barrier, and for various values of barrier layer thickness. The results of our analysis clearly indicate that increasing the GaN capping layer thickness leads to a decrease in the 2DEG density. Furthermore, it is found that the room-temperature 2D-electron mobility reaches a maximum value of approximately 1.8×103 cm2 /Vs−1 for GaN capping layer thickness grater than 100 Å with an Al0.32Ga0.68N barrier layer of 200 Å thick. In contrast, for same structure, the 2DEG density decreases monotonically with GaN capping layer thickness, and eventually saturates at approximately 6×1012 cm−2 for capping layer thickness greater than 500 Å. A comparison between our calculated results with published experimental data is shown to be in good agreement for GaN capping layers up to 500 Å thickness.  相似文献   

16.
Treatment of GaN with SiH4 and NH3 increases the size of surface pits associated with threading dislocations, allowing them to be easily imaged by atomic force microscopy. Here, we assess the effect of a similar treatment on AlxGa1−xN surfaces for x ≤ 0.4. For relaxed AlxGa1−xN epilayers, an increase in the observed size and density of threading dislocation pits is observed. However, if the AlxGa1−xN is under tensile strain, the treatment results in the appearance of nanometre-scale surface hillocks. These hillocks may prevent observation of the dislocation pits. The hillocks are found to consist of crystalline AlxGa1−xN, and hence are suggested to be formed by strain driven etching or transformation of the surface by SiH4 and NH3.  相似文献   

17.
We investigated the influence of an ultrathin InGaN channel layer on two-dimensional electron gas (2DEG) properties in a newly proposed hybrid GaN/InxGa1−xN/ZnO heterostructure using numerical methods. We found that 2DEG carriers were confined at InGaN/ZnO and GaN/InGaN interfaces. Our calculations show that the probability densities of 2DEG carriers at these interfaces are highly influenced by the In mole fraction of the InGaN channel layer. Therefore, 2DEG carrier confinement can be adjustable by using the In mole fraction of the InGaN channel layer. The influence of an ultrathin InGaN channel layer on 2DEG carrier mobility is also discussed. Usage of an ultrathin InGaN channel layer with a low indium mole fraction in these heterostructures can help to reduce the short-channel effects by improvements such as providing 2DEG with higher sheet carrier density which is close to the surface and has better carrier confinement.  相似文献   

18.
Tunneling induced electron transfer in SiNx/Al0.22Ga0.78N/GaN based metal-insulator-semiconductor (MIS) structures has been investigated by means of capacitance-voltage (C-V) measurements at various temperatures. Large clock-wise hysteresis window in C-V profiles indicates the injection of electrons from the two-dimensional electron gas (2DEG) channel to the SiNx layer. Depletion of the 2DEG at positive bias in the negative sweeping direction indicates that the charges injected have a long decay time, which was also observed in the recovery process of the capacitance after injection. The tunneling induced electron transfer effect in SiNx/Al0.22Ga0.78N/GaN based MIS structure opens up a way to design AlxGa1−xN/GaN based variable capacitors and memory devices.  相似文献   

19.
Using the Empirical Pseudopotential Method (EPM) combined with an improved Virtual Crystal Approximation (VCA), where the effect of compositional disorder is included as an effective periodic potential, we have calculated the electronic band structure of GaN and AlN under hydrostatic pressure up to 200 kbar and 160 kbar, respectively. The behavior of electronic properties of their alloys AlxGa1−xN in the wurtzite structure have been predicted at zero pressure, for the entire range of alloy concentrations.  相似文献   

20.
Electron–electron interaction effect of the two-dimensional electron gas (2DEG) in AlxGa1−xN/GaN heterostructures has been investigated by means of magnetotransport measurements at low temperatures. From the temperature dependence of the longitudinal conductivity of the heterostructures, a clear transition region has been observed. Based on the theoretical analysis, we conclude that this region corresponds to the transition from the diffusive regime to the ballistic regime of the 2DEG transport property. The interaction constant is determined to be −0.423, which is consistent with the theoretical prediction. However, the critical temperature for the transition, which is 8 K in AlxGa1−xN/GaN heterostructures, is much higher than the theoretical prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号