首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoluminescence spectra of Sm2+-doped BaBr2 have been measured under hydrostatic pressures up to 17 GPa at room temperature. In the low pressure range a red-shift of the broad 5d-4f transition of −145 cm−1/GPa is observed. From 5 to 8 GPa a phase mixture of the initial orthorhombic phase and the high-pressure monoclinic phase gives rise to two 5d-4f bands, which are strongly overlapping. Above 8 GPa the crystal is completely transformed to its high-pressure phase where two different Sm2+ sites exist, but only one broad 5d-4f transition is detected. It exhibits a red-shift of −36 cm−1/GPa. In addition, the line shifts of the 5D07FJ (J=0, 1, 2) transitions are investigated. Linear shifts of −19 cm−1/GPa for J=0, 2 and of −13 cm−1/GPa for J=1 are observed in the pressure range from 0 to 5 GPa.  相似文献   

2.
The crystal structure and chemical composition of a crystal of MgCr2O4 post-spinel phase synthesized in the model system Mg3Cr2Si3O12–Mg4Si4O12 at 23 GPa and 1600 °C have been investigated. Electron microprobe analysis confirmed the MgCr2O4 stochiometry of the studied phase. The compound was found to crystallize with the orthorhombic calcium-titanate (CaTi2O4) structure type, space group Bbmm, with lattice parameters a=9.468(1), b=9.670(1), c=2.845(1) Å, V=260.5(1) Å3, and Z=4. The structure was refined to R1=0.046 using 286 independent reflections. Magnesium was found to fully occupy the eightfold-coordinated A site (with a mean bond distance of 2.289 Å) and Cr the octahedral B site (mean: 1.986 Å). The successful synthesis of MgCr2O4 with (CaTi2O4)-type structure and its structural characterization demonstrate the stability of the new post-spinel phase. The absence of MgCr2O4 compounds with spinel structure coexisting with the post-spinel phase in the investigated run is discussed.  相似文献   

3.
Measurements of the electrical conductivity were performed in KHSO4 at pressures between 0.5 and 2.5 GPa and in the temperature range 120-350 °C by the use of the impedance spectroscopy. The temperatures of the α-β phase transition (TTr) and of the melting (Tm), determined from the Arrhenius plots ln(σT) vs. 1/T, increase with pressure up to 1.5 GPa having dT/dP∼+45 K/GPa. Above the pressure 1.5 GPa, the pressure dependencies of TTr and Tm are negative dT/dP∼−45 K/GPa. At pressures above 0.5 GPa, the reversible decomposition of KHSO4 into K3H(SO4)2+H2SO4 (and probably into K5H3(SO4)4+H2SO4) affects the electrical conductivity of KHSO4, with the typical values of the protonic electrical conductivity, c. 10−1 S/cm at 2.5 GPa.  相似文献   

4.
Luminescence spectra of BaBr2:Eu2+ have been measured under pressures up to 27 GPa at room temperature. In the low-pressure range a red-shift of the 5d-4f transition of −225 cm−1/GPa is observed. From 3 to 10 GPa a phase mixture of the original orthorhombic phase and the high-pressure monoclinic phase gives rise to two luminescence bands. Above 10 GPa the crystal is completely transformed to its high-pressure phase where two different Eu2+ sites exist of which, however, only one 5d-4f transition is detected. This transition exhibits a red-shift of −200 cm−1/GPa. The shifts are compared with other literature data.  相似文献   

5.
We report the results of a room-temperature investigation of the thermoelectric and the dilatometric properties of a heavy fermion system YbPd2Si2 (itterbium-palladium-silicon, 1-2-2) at high pressure P up to 22 GPa; YbPd2Si2 is a less-studied representative of the RM2X2 family (R=Ce, Yb, U; M=transition metal; X=Si, Ge) with the tetragonal ThCr2Si2-type structure of the I4/mmm space group. Around P∼6±0.5 GPa, a phase transition in Yb-Pd-Si was registered by the drastic changes in the pressure dependencies of the electrical resistance R, the thermopower (Seebeck effect) S, a temperature difference along a sample ΔT, and a sample's thickness Δx (related to compressibility). Both a nature of the found phase transition and a presumable P-T phase diagram of YbPd2Si2 are discussed.  相似文献   

6.
We present a first-principles study of the phase transition and lattice dynamics of Ce within the framework of the density functional theory using the GGA+U method. Our calculated results denote that under pressure the transition path is α-Ce (fcc)→α″-Ce (monoclinic, with two atoms per unit cell)→bct-Ce (body centered tetragonal), and the transition pressures are located at 5.36 and 14.37 GPa, respectively. The equation of state in a wide range of pressure is consistent with the experimental data. During the γ-α phase transition, the magnetic moment disappears gradually, which is mainly due to the strong interaction between the 4f and 5d electrons. By calculating the free energies from phonon dispersions including electronic contribution, the obtained γ-α transition temperature at zero pressure is 148 K. From the Blackman diagram of dimensionless elastic constant ratios, we can find that both γ- and α-Ce show negative Cauchy pressure—C44>C12.  相似文献   

7.
The dielectric properties of the [4-NH2C5H4NH] SbCl4 (abbreviated as 4-APCA) crystal were investigated under hydrostatic pressure up to 300 Mpa. The pressure-temperature phase diagram was given. The paraelectric-ferroelectric phase transition (II→III) temperature (Tc) increases linearly with increasing pressure with a slope dTc/dp=21×10−2 K/MPa. The pressure dependence of Curie-Weiss constants has been evaluated also. In the paraelectric phase (II) the Curie constant (C+) was pressure dependent whereas the C constant over the ferroelectric phase (III) was almost constant. The results are interpreted in terms of improper and displacive type phase transition model with a soft phonon at a zone boundary.  相似文献   

8.
We measured the heat capacity of CeIrSi3 (100 mK<T<6 K) under high pressure up to P=1.38 GPa. The measurements have been used a quasiadiabatic method utilizing a CuBe piston-cylinder pressure cell in a dilution refrigerator. At 0 GPa, a sharp anomaly which indicates the antiferromagnetically transition is observed at TN=5 K. TN decreases monotonically with increasing pressure up to P=1.38 GPa. The magnetic entropy is released below TN only 19% of R ln 2 at 0 GPa. And the magnetic entropy decreases with increasing pressure up to 1.38 GPa, 64% compared to that at 0 GPa.  相似文献   

9.
The gas phase infrared emission spectrum of the A3Σ-X3Π electronic transition of SiC has been observed using a high resolution Fourier transform spectrometer. Three bands ν′ − ν″ = 0-1, 0-0, and 1-0 have been observed in the 2770, 3723, and 4578 cm−1 regions, where the 0-1 and 0-0 bands were observed for the first time. The SiC radical was generated by a dc discharge in a flowing mixture of hexamethyl disilane [(CH3)6Si2] and He. A total of 1074 rotational transitions assigned to the 0-1, 0-0, and 1-0 bands have been combined in a simultaneous analysis with previously reported pure rotational data to determine the molecular constants for SiC in the two electronic states. The principal equilibrium molecular constants for the A3Σ state are: Be = 0.6181195(18) cm−1, αe = 0.0051921(20) cm−1, re = 1.8020884(26) Å, and Te = 3773.31(17) cm−1, with one standard deviation given in parentheses. The effect of a perturbation was recognized between the ν = 4 level of X3Π and the ν = 0 level of A3Σ, and the analysis was carried out to determine the interaction parameter between the two states.  相似文献   

10.
The plane-wave pseudo-potential method within the framework of first-principles is used to investigate the structural and elastic properties of Mg2Si in its low pressure phase (Fm-3m) and intermediate pressure phase (Pnma). The high-pressure lattice constants, the elastic constants, the elastic moduli and the anisotropy factors of the anti-cotunnite Mg2Si are presented and discussed. The results show that our system is mechanically stable. The reversible phase transition from anti-fluorite to anti-cotunnite structure is successfully reproduced through the quasi-harmonic Debye model. The phase boundary can be described as P=4.06826−6.95×10−3T+5.08838×10−5T2−4.24073×10−8T3. To complete the fundamental characteristics of these compounds we have analysed the thermodynamic properties such as thermal expansion, bulk modulus, isochoric heat capacity and Debye temperature in a pressure range 0-21 GPa and a temperature range 0-1200 K. The obtained results tend to support the experimental data when available. Therefore, the present results indicate that the combination of first-principles and quasi-harmonic approximations is an efficient scheme to simulate the high-temperature behaviours of semiconductors like Mg2Si.  相似文献   

11.
In this paper, the excitation spectrum and luminescence at 14 569, 17 225, 18 829 and 14 659 cm-1 for Fe3+ ion at the K+ site of KTaO3 crystals are assigned, respectively, to the 6A1(S)→4T1(G), 4T2(G), 4E1(G)[4A1(G)] and 4T1(G)→6A1(S) transitions rather than to the 6A1(S)→4T1(G), 2T2(I), 4T2(G) and 4T1(G)→6A1(S) transitions given in a previous paper [Bryknar et al., Radiat. Eff. Def. Solids 149(1999)51]. On the basis of this assignment, the reasonable optical spectrum parameters (in particular, the cubic field parameter Dq≈−640 cm−1) are obtained. The validity of this assignment is discussed.  相似文献   

12.
Crystal structure and compressibility of potassium azide was investigated by in-situ synchrotron powder X-ray diffraction in a diamond anvil cell at room temperature up to 37.7 GPa. In the body-centered tetragonal (bct) phase, an anisotropic compressibility was observed with greater compressibility in the direction perpendicular to the plane containing N3 ions than directions within that plane. The bulk modulus of the bct phase was determined to be 18.6(7) GPa. A pressure-induced phase transition may occur at 15.5 GPa.  相似文献   

13.
The work is concerned with the high-temperature heat treatment of an Al-12 wt.% Si alloy coated by an electroless Ni-P layer. The electroless deposition took place on a pre-treated substrate in a bath containing nickel hypophosphite, nickel lactate and lactic acid. Resulting Ni-P deposit showed a thickness of about 8 μm. The coated samples were heat-treated at 200-550 °C/1-24 h. LM, SEM, EDS and XRD were used to investigate phase transformations. Adherence to the substrate was estimated from the scratch test and microhardness of the heat-treated layers was also measured. It is found that various phase transformations occur, as both temperature and annealing time increase. These include (1) amorphous Ni-P → Ni + Ni3P, (2) Al + Ni → Al3Ni, (3) Ni3P → Ni12P5 + Ni, (4) Ni12P5 → Ni2P + Ni, and (5) Al3Ni + Ni → Al3Ni2. The formation of intermetallic phases, particularly Al3Ni2, leads to significant surface hardening, however, too thick layers of intermetallics reduce the adherence to the substrate. Based on the growth kinetics of the intermetallic phases, diffusion coefficients of Ni in Al3Ni and Al3Ni2 at 450-550 °C are estimated as follows: D(Al3Ni, 450 °C) ≈ 6 × 10−12 cm2 s−1, D(Al3Ni, 550 °C) ≈ 4 × 10−11 cm2 s−1, D(Al3Ni2, 450 °C) ≈ 1 × 10−12 cm2 s−1 and D(Al3Ni2, 550 °C) ≈ 1 × 10−11 cm2 s−1. Mechanisms of phase transformations are discussed in relation to the elemental diffusion.  相似文献   

14.
In this work, we report a quite different conclusion from Tian et al. [Phys. Rev. B 78 (2008) 235431]. It is proved that β-C3N2 is the only phase under high pressure, and α-C3N2 does not exist. β-C3N2 is a covalent crystal composed of strong CC and CN covalent bonds. Band gap of β-C3N2 increases with pressure. The width of antibonding state, shown in partial density of states (PDOS), keeps about 5 eV with rising pressures, which brings stable CN or CC covalent bonds. At sufficiently low temperatures, heat capacity (Cv) is proportional to T3; and at intermediate temperatures, Cv is governed by the details of vibrations of the atoms; finally, Cv reaches to β-C3N2's Dulong–Pettit limit (about 120 J/mol K). Though thermal expansion coefficient (α) increases with temperature, α is less than 1×10−5 K−1. Elastic constants rise with pressure, but shear moduli is quite steady which increases just a little with pressures.  相似文献   

15.
The crystalline structure of a new compound containing the 1,3,4-oxadiazole moiety, 4-(5-methyl-1,3,4-oxadiazole-2yl-)-N,N′-dimethyl-phenylamine (MODPA) was determined. It shows a monoclinic structure with space group P21/c and lattice parameters: a=1.02997(6), b=0.64840(4), c=1.58117(10) nm and β=99.4820(10)°. To study the intermolecular interactions in oxadiazole containing organic crystals, X-ray studies on MODPA and 2,5-diphenyl-1,3,4-oxadiazole (DPO) were performed up to 5 GPa at room temperature. The Murnaghan equation of state is used to describe the compression behaviour of both substances. From these results, the bulk modulus and its pressure derivative were determined. The values obtained are: K0=6.3 GPa and K0=6.8 for MODPA and K0=7.3 GPa and K0=6.7 for DPO. Additionally, measurements under increasing temperature at ambient pressure were carried out to evaluate the thermal expansion coefficient: α=1.8×10−4 K−1 for MODPA and α=1.9×10−4 K−1 for DPO.  相似文献   

16.
We investigated magnetocaloric effect in La0.45Pr0.25Ca0.3MnO3 by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with TC=200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of ΔSm=−7.2 J kg−1 K−1 at T=212.5 K and refrigeration capacity of 228 J kg−1 are found for a field change of ΔH=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound.  相似文献   

17.
Proton-deuteron mutual diffusion in a CsHSO4/CsDSO4 solid at 373 K was examined up to 3 GPa by an infrared mapping measurement. Phases HPHT1 and HPHT2 appeared at 1.5 and 2.3 GPa, respectively, after heating. These phases were found to be stable at room temperature, while phase IV, which appeared on compression at room temperature, was metastable. The pressure dependence of the proton-deuteron mutual diffusion coefficient was determined from the temporal change in the deuteron distribution of the solid. The coefficient decreased from 7×10−16 to 1×10−16 m2/s during the transition from phase II to HPHT1 at 1.5 GPa, and showed no significant change during the transition to phase HPHT2. These results suggested that in addition to the hydrogen bond length, other structural factors might also have had an influence on the rate of diffusion.  相似文献   

18.
The phase transformations of titanium metal have been studied at temperatures and pressures up to 973 K and 8.7 GPa using synchrotron X-ray diffraction. The equilibrium phase boundary of the α-ω transition has a dT/dP slope of 345 K/GPa, and the transition pressure at room temperature is located at 5.7 GPa. The volume change across the α-ω transition is ΔV=0.197 cm3/mol, and the associated entropy change is ΔS=0.57 J/mol K. Except for ΔV, our results differ substantially from those of previous studies based on an equilibrium transition pressure of 2.0 GPa at room temperature. The α-ω-β triple point is estimated to be at 7.5 GPa and 913 K, which is comparable with previous results obtained from differential thermal analysis and resistometric measurements. An update, more accurate phase diagram is established for Ti metal based on the present observations and previous constraints on the α-β and ω-β phase boundaries.  相似文献   

19.
Emission spectra of the b1Σ+(b0+) → X3Σ(X10+,X21) and a1Δ(a2) → X21 transitions of AsBr have been measured in the near-infrared spectral region with a Fourier-transform spectrometer. The arsenic bromide radicals were generated in fast-flow systems by reaction of arsenic vapor (Asx) with bromine and were excited by microwave-discharged oxygen. The most prominent features in the spectrum are the Δv = +1,0,−1, and −2 band sequences of the b1Σ+(b0+) → X3Σ(X10+) transition in the range 11 700-12 700 cm−1. With lower intensities, the Δv = 0 and −1 sequences of the b1Σ+(b0+) → X3Σ(X21) sub-system show up in the same range. Further to the red, between 6000 and 6700 cm−1, the Δv = 0, +1, and −1 sequences of the hitherto unknown a1Δ(a2) → X21 transition are observed. Analyses of medium- and high-resolution spectra have yielded improved molecular constants for the X10+, X21, and b0+ states and first values of the electronic energy and the vibrational constants of the a2 state.  相似文献   

20.
Middle infrared absorption, Raman scattering and proton magnetic resonance relaxation measurements were performed for [Zn(NH3)4](BF4) in order to establish relationship between the observed phase transitions and reorientational motions of the NH3 ligands and BF4 anions. The temperature dependence of spin-lattice relaxation time (T1(1H)) and of the full width at half maximum (FWHM) of the bands connected with ρr(NH3), ν2(BF4) and ν4(BF4) modes in the infrared and in the Raman spectra have shown that in the high temperature phase of [Zn(NH3)4](BF4)2 all molecular groups perform the following stochastic reorientational motions: fast (τR≈10−12 s) 120° flips of NH3 ligands about three-fold axis, fast isotropic reorientation of BF4 anions and slow (τR≈10−4 s) isotropic reorientation (“tumbling”) of the whole [Zn(NH3)4]2+ cation. Mean values of the activation energies for uniaxial reorientation of NH3 and isotropic reorientation of BF4 at phases I and II are ca. 3 kJ mol−1 and ca. 5 kJ mol−1, respectively. At phases III and IV the activation energies values for uniaxial reorientation of both NH3 and of BF4 equal to ca. 7 kJ mol−1. Nearly the same values of the activation energies, as well as of the reorientational correlation times, at phases III and IV well explain existence of the coupling between reorientational motions of NH3 and BF4. Splitting some of the infrared bands at TC2=117 K suggests reducing of crystal symmetry at this phase transition. Sudden narrowing of the bands connected with ν2(BF4), ν4(BF4) and ρr(NH3) modes at TC3=101 K implies slowing down (τR?10−10 s) of the fast uniaxial reorientational motions of the BF4 anions and NH3 ligands at this phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号