首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Skew Models II     
If g and G are the pdf and the cdf of a distribution symmetric around 0 then the pdf 2g(u)G(λ u) is said to define a skew distribution. In this paper, we provide a mathematical treatment of the skew distributions when g and G are taken to come from one of Pearson type II, Pearson type VII or the generalized t distribution.   相似文献   

2.
Let G be a simple graph of order n and girth g. For any two adjacent vertices u and v of G, if d G (u) + d G (v) ⩾ n − 2g + 5 then G is up-embeddable. In the case of 2-edge-connected (resp. 3-edge-connected) graph, G is up-embeddable if d G (u) + d G (v) ⩾ n − 2g + 3 (resp. d G (u) + d G (v) ⩾ n − 2g −5) for any two adjacent vertices u and v of G. Furthermore, the above three lower bounds are all shown to be tight. This work was supported by National Natural Science Foundation of China (Grant No. 10571013)  相似文献   

3.
The geodetic numbers of graphs and digraphs   总被引:1,自引:0,他引:1  
For every two vertices u and v in a graph G,a u-v geodesic is a shortest path between u and v.Let I(u,v)denote the set of all vertices lying on a u-v geodesic.For a vertex subset S,let I(S) denote the union of all I(u,v)for u,v∈S.The geodetic number g(G)of a graph G is the minimum cardinality of a set S with I(S)=V(G).For a digraph D,there is analogous terminology for the geodetic number g(D).The geodetic spectrum of a graph G,denoted by S(G),is the set of geodetic numbers of all orientations of graph G.The lower geodetic number is g~-(G)=minS(G)and the upper geodetic number is g~ (G)=maxS(G).The main purpose of this paper is to study the relations among g(G),g~-(G)and g~ (G)for connected graphs G.In addition,a sufficient and necessary condition for the equality of g(G)and g(G×K_2)is presented,which improves a result of Chartrand,Harary and Zhang.  相似文献   

4.
Let G be a digraph with vertex set V(G) and arc set E(G) and let g = (g , g +) and ƒ = (ƒ , ƒ +) be pairs of positive integer-valued functions defined on V(G) such that g (x) ⩽ ƒ (x) and g +(x) ⩽ ƒ +(x) for each xV(G). A (g, ƒ)-factor of G is a spanning subdigraph H of G such that g (x) ⩽ id H (x) ⩽ ƒ (x) and g +(x) ⩽ od H (x) ⩽ ƒ +(x) for each xV(H); a (g, ƒ)-factorization of G is a partition of E(G) into arc-disjoint (g, ƒ)-factors. Let = {F 1, F 2,…, F m} and H be a factorization and a subdigraph of G, respectively. is called k-orthogonal to H if each F i , 1 ⩽ im, has exactly k arcs in common with H. In this paper it is proved that every (mg+m−1,m+1)-digraph has a (g, f)-factorization k-orthogonal to any given subdigraph with km arcs if k ⩽ min{g (x), g +(x)} for any xV(G) and that every (mg, mf)-digraph has a (g, f)-factorization orthogonal to any given directed m-star if 0 ⩽ g(x) ⩽ f(x) for any xV(G). The results in this paper are in some sense best possible.   相似文献   

5.
On Group Chromatic Number of Graphs   总被引:2,自引:0,他引:2  
Let G be a graph and A an Abelian group. Denote by F(G, A) the set of all functions from E(G) to A. Denote by D an orientation of E(G). For fF(G,A), an (A,f)-coloring of G under the orientation D is a function c : V(G)↦A such that for every directed edge uv from u to v, c(u)−c(v) ≠ f(uv). G is A-colorable under the orientation D if for any function fF(G, A), G has an (A, f)-coloring. It is known that A-colorability is independent of the choice of the orientation. The group chromatic number of a graph G is defined to be the least positive integer m for which G is A-colorable for any Abelian group A of order ≥m, and is denoted by χg(G). In this note we will prove the following results. (1) Let H1 and H2 be two subgraphs of G such that V(H1)∩V(H2)=∅ and V(H1)∪V(H2)=V(G). Then χg(G)≤min{max{χg(H1), maxvV(H2)deg(v,G)+1},max{χg(H2), maxuV(H1) deg (u, G) + 1}}. We also show that this bound is best possible. (2) If G is a simple graph without a K3,3-minor, then χg(G)≤5.  相似文献   

6.
Let G be a graph with vertex set V(G) and edge set E(G) and let g and f be two integervalued functions defined on V(G) such that 2k - 2 ≤g(x)≤f(x) for all x∈V(G). Let H be a subgraph of G with mk edges. In this paper, it is proved that every (mg m-1,mf-m 1)-graph G has (g, f)-factorizations randomly k-orthogonal to H under some special conditions.  相似文献   

7.
Let G be a connected graph of order n and girth g. If dG(u) + dG(v) ≥ n − 2g + 5 for any two non-adjacent vertices u and v, then G is up-embeddable. Further more, the lower bound is best possible. Similarly the result of k-edge connected simple graph with girth g is also obtained, k = 2,3. Partially supported by the Postdoctoral Seience Foundation of Central South University and NNSFC under Grant No. 10751013.  相似文献   

8.
On the adjacent-vertex-strongly-distinguishing total coloring of graphs   总被引:6,自引:0,他引:6  
For any vertex u∈V(G), let T_N(U)={u}∪{uv|uv∈E(G), v∈v(G)}∪{v∈v(G)|uv∈E(G)}and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C_f(u)={f(x)|x∈TN(U)}. For any two adjacent vertices x and y of V(G)such that C_f(x)≠C_f(y), we refer to f as a k-avsdt-coloring of G("avsdt"is the abbreviation of"adjacent-vertex-strongly- distinguishing total"). The avsdt-coloring number of G, denoted by X_(ast)(G), is the minimal number of colors required for a avsdt-coloring of G. In this paper, the avsdt-coloring numbers on some familiar graphs are studied, such as paths, cycles, complete graphs, complete bipartite graphs and so on. We proveΔ(G) 1≤X_(ast)(G)≤Δ(G) 2 for any tree or unique cycle graph G.  相似文献   

9.
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. Alon et al. conjectured that a′(G) ⩽ Δ(G) + 2 for any graphs. For planar graphs G with girth g(G), we prove that a′(G) ⩽ max{2Δ(G) − 2, Δ(G) + 22} if g(G) ⩾ 3, a′(G) ⩽ Δ(G) + 2 if g(G) ⩾ 5, a′(G) ⩽ Δ(G) + 1 if g(G) ⩾ 7, and a′(G) = Δ(G) if g(G) ⩾ 16 and Δ(G) ⩾ 3. For series-parallel graphs G, we have a′(G) ⩽ Δ(G) + 1. This work was supported by National Natural Science Foundation of China (Grant No. 10871119) and Natural Science Foundation of Shandong Province (Grant No. Y2008A20).  相似文献   

10.
For a connected graph the restricted edge‐connectivity λ′(G) is defined as the minimum cardinality of an edge‐cut over all edge‐cuts S such that there are no isolated vertices in GS. A graph G is said to be λ′‐optimal if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G defined as ξ(G) = min{d(u) + d(v) ? 2:uvE(G)}, d(u) denoting the degree of a vertex u. A. Hellwig and L. Volkmann [Sufficient conditions for λ′‐optimality in graphs of diameter 2, Discrete Math 283 (2004), 113–120] gave a sufficient condition for λ′‐optimality in graphs of diameter 2. In this paper, we generalize this condition in graphs of diameter g ? 1, g being the girth of the graph, and show that a graph G with diameter at most g ? 2 is λ′‐optimal. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 73–86, 2006  相似文献   

11.
It is shown that every almost linear Pexider mappings f, g, h from a unital C*-algebra into a unital C*-algebra ℬ are homomorphisms when f(2 n uy) = f(2 n u)f(y), g(2 n uy) = g(2 n u)g(y) and h(2 n uy) = h(2 n u)h(y) hold for all unitaries u ∈ , all y ∈ , and all n ∈ ℤ, and that every almost linear continuous Pexider mappings f, g, h from a unital C*-algebra of real rank zero into a unital C*-algebra ℬ are homomorphisms when f(2 n uy) = f(2 n u)f(y), g(2 n uy) = g(2 n u)g(y) and h(2 n uy) = h(2 n u)h(y) hold for all u ∈ {v ∈ : v = v* and v is invertible}, all y ∈ and all n ∈ ℤ. Furthermore, we prove the Cauchy-Rassias stability of *-homomorphisms between unital C*-algebras, and ℂ-linear *-derivations on unital C*-algebras. This work was supported by Korea Research Foundation Grant KRF-2003-042-C00008. The second author was supported by the Brain Korea 21 Project in 2005.  相似文献   

12.
Let G be a graph with vertex set V(G) and edge set E(G) and let g and f be two integer-valuated functions defined on V(G) such that g(x) ≤f(x) for all xV(G). Then a (g, f)-factor of G is a spanning subgraph H of G such that g(x) ≤d H (x) ≤f(x) for all xV(G). A (g, f)-factorization of G is a partition of E(G) into edge-disjoint (g, f)-factors. Let = {F 1, F 2, ..., F m } be a factorization of G and H be a subgraph of G with mr edges. If F i , 1 ≤im, has exactly r edges in common with H, then is said to be r-orthogonal to H. In this paper it is proved that every (mg + kr, mfkr)-graph, where m, k and r are positive integers with k < m and gr, contains a subgraph R such that R has a (g, f)-factorization which is r-orthogonal to a given subgraph H with kr edges. This research is supported by the National Natural Science Foundation of China (19831080) and RSDP of China  相似文献   

13.
LetG be a unimodular Lie group, Γ a co-compact discrete subgroup ofG and ‘a’ a semisimple element ofG. LetT a be the mapgΓ →ag Γ:G/Γ →G/Γ. The following statements are pairwise equivalent: (1) (T a, G/Γ,θ) is weak-mixing. (2) (T a, G/Γ) is topologically weak-mixing. (3) (G u, G/Γ) is uniquely ergodic. (4) (G u, G/Γ,θ) is ergodic. (5) (G u, G/Γ) is point transitive. (6) (G u, G/Γ) is minimal. If in additionG is semisimple with finite center and no compact factors, then the statement “(T a, G/Γ,θ) is ergodic” may be added to the above list. The authors were partially supported by NSF grant MCS 75-05250.  相似文献   

14.
Let G be a simple graph with n vertices. For any v ? V(G){v \in V(G)} , let N(v)={u ? V(G): uv ? E(G)}{N(v)=\{u \in V(G): uv \in E(G)\}} , NC(G) = min{|N(u) èN(v)|: u, v ? V(G){NC(G)= \min \{|N(u) \cup N(v)|: u, v \in V(G)} and uv \not ? E(G)}{uv \not \in E(G)\}} , and NC2(G) = min{|N(u) èN(v)|: u, v ? V(G){NC_2(G)= \min\{|N(u) \cup N(v)|: u, v \in V(G)} and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on nl vertices is [l, n]-pan-connected if for any u, v ? V(G){u, v \in V(G)} , and any integer m with lmn, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC 2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC 2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC 2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.  相似文献   

15.
The Erdős-Sós conjecture says that a graph G on n vertices and number of edges e(G) > n(k− 1)/2 contains all trees of size k. In this paper we prove a sufficient condition for a graph to contain every tree of size k formulated in terms of the minimum edge degree ζ(G) of a graph G defined as ζ(G) = min{d(u) + d(v) − 2: uvE(G)}. More precisely, we show that a connected graph G with maximum degree Δ(G) ≥ k and minimum edge degree ζ(G) ≥ 2k − 4 contains every tree of k edges if d G (x) + d G (y) ≥ 2k − 4 for all pairs x, y of nonadjacent neighbors of a vertex u of d G (u) ≥ k.  相似文献   

16.
 Let G be a graph and W a subset of V(G). Let g,f:V(G)→Z be two integer-valued functions such that g(x)≤f(x) for all xV(G) and g(y)≡f(y) (mod 2) for all yW. Then a spanning subgraph F of G is called a partial parity (g,f)-factor with respect to W if g(x)≤deg F (x)≤f(x) for all xV(G) and deg F (y)≡f(y) (mod 2) for all yW. We obtain a criterion for a graph G to have a partial parity (g,f)-factor with respect to W. Furthermore, by making use of this criterion, we give some necessary and sufficient conditions for a graph G to have a subgraph which covers W and has a certain given property. Received: June 14, 1999?Final version received: August 21, 2000  相似文献   

17.
We show that two continuous inverse limit actions α and β of a locally compact group G on two pro-C *-algebras A and B are stably outer conjugate if and only if there is a full Hilbert A-module E and a continuous action u of G on E such that E and E *(the dual module of E) are countably generated in M(E)(the multiplier module of E), respectively M(E *) and the pair (E, u) implements a strong Morita equivalence between α and β. This is a generalization of a result of F. Combes [Proc. London Math. Soc. 49(1984), 289–306].   相似文献   

18.
A k-edge-weighting w of a graph G is an assignment of an integer weight, w(e) ∈ {1,…,k}, to each edge e. An edge-weighting naturally induces a vertex coloring c by defining c(u) = Σ eu w(e) for every uV (G). A k-edge-weighting of a graph G is vertex-coloring if the induced coloring c is proper, i.e., c(u) ≠ c(v) for any edge uvE(G). When k ≡ 2 (mod 4) and k ⩾ 6, we prove that if G is k-colorable and 2-connected, δ(G) ⩾ k − 1, then G admits a vertex-coloring k-edge-weighting. We also obtain several sufficient conditions for graphs to be vertex-coloring k-edge-weighting.   相似文献   

19.
We consider the generalized convolution powers G α *u (x) of an arbitrary semistable distribution function G α (x) of exponent α∈(0,2), and prove that for all j, k∈{0,1,2,…} and u>0 the derivatives G α (k,j)(x;u)= k+j G α *u (x)/ x k u j , x∈ℝ, are of bounded variation on the whole real line ℝ. The proof, along with an integral recursion in j, is new even in the special case of stable laws, and the result provides a framework for possible asymptotic expansions in merge theorems from the domain of geometric partial attraction of semistable laws. An erratum to this article can be found at  相似文献   

20.
We study the existence and the properties of reduced measures for the parabolic equations t u − Δu + g(u) = 0 in Ω × (0, ∞) subject to the conditions (P): u = 0 on Ω × (0, ∞), u(x, 0) = μ and (P′): u = μ′ on Ω × (0, ∞), u(x, 0) = 0, where μ and μ′ are positive Radon measures and g is a continuous nondecreasing function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号