首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A zinc phthalocyanine endowed with four [18]‐crown‐6 moieties, ZnPcTeCr, has been prepared and self‐assembled with either pyridyl‐functionalized perylenebisimides (PDI‐Py) or fullerenes (C60‐Py) to afford a set of novel electron donor–acceptor hybrids. In the case of ZnPcTeCr, aggregation has been circumvented by the addition of potassium or rubidium ions to lead to the formation of monomers and cofacial dimers, respectively. From fluorescence titration experiments, which gave rise to mutual interactions between the electron donors and the acceptors in the excited state, the association constants of the respective ZnPcTeCr monomers and/or dimers with the corresponding electron acceptors were derived. Complementary transient‐absorption experiments not only corroborated photoinduced electron transfer from ZnPcTeCr to either PDI‐Py or C60‐Py within the electron donor–acceptor hybrids, but also the unexpected photoinduced electron transfer within ZnPcTeCr dimers. In the electron donor–acceptor hybrids, the charge‐separated‐state lifetimes were elucidated to be close to 337 ps and 3.4 ns for the two PDI‐Pys, whereas the longest lifetime for the photoactive system that contains C60‐Py was calculated to be approximately 5.1 ns.  相似文献   

2.
Perylene-3,4:9,10-bis(dicarboximide) (PDI) and its derivatives are robust organic dyes that strongly absorb visible light and display a strong tendency to self-assemble into ordered aggregates, having significant interest as photoactive materials in a wide variety of organic electronics. To better understand the nature of the electronics states produced by photoexcitation of such aggregates, the photophysics of a series of covalent, cofacially oriented, pi-stacked dimers and trimers of PDI and 1,7-bis(3',5'-di-t-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (PPDI) were characterized using both time-resolved absorption and fluorescence spectroscopy. The covalent linkage between the chromophores was accomplished using 9,9-dimethylxanthene spacers. Placing n-octyl groups on the imide nitrogen atoms at the end of the PDI chromophores not attached to the xanthene spacer results in PDI dimers having near optimal pi-stacking, leading to formation of a low-energy excimer-like state, while substituting the more sterically demanding 12-tricosanyl group on the imides causes deviations from the optimum that result in slower formation of an excimer-like excited state having somewhat higher energy. By comparison, PPDI dimers having terminal n-octyl imide groups have two isomers, whose photophysical properties depend on the ability of the phenoxy groups at the 1,7-positions to modify the pi stacking of the PPDI molecules. In general, disruption of optimal pi-stacking by steric interactions of the phenoxy side groups results in excimer-like states that are higher in energy. The corresponding lowest excited singlet states of the PDI and PPDI trimers are dimer-like in nature and suggest that structural distortions that accompany formation of the trimers are sufficient to confine the electronic interaction on two chromophores within these systems. This further suggests that it may be useful to build into oligomeric PDI and PPDI systems some degree of flexibility that allows the structural relaxations necessary to promote electronic interactions between multiple chromophores.  相似文献   

3.
Photoexcitation of chromophoric dimers constrained to a symmetric pi-stacked geometry by their molecular structure usually produces excimers independent of solvent polarity, while dimers with edge-to-edge perpendicular pi systems undergo excited-state symmetry breaking in highly polar solvents leading to intradimer charge separation. We present direct evidence for symmetry breaking in the lowest excited singlet state of a symmetric cofacial dimer of 1,7-bis(pyrrolidin-1'-yl)-perylene-3,4:9,10-bis(dicarboximide) (5PDI) in the low polarity solvent toluene to produce a radical ion pair quantitatively. This dimer, cof-5PDI2, was synthesized by attaching two 5PDI chromophores via imide groups to a xanthene spacer. For comparison, a linear symmetric dimer, lin-5PDI2, was prepared in which the 5PDI chromophores are linked end-to-end via a N-N single bond between their imides. The edge-to-edge pi systems of the 5PDI chromophores within lin-5PDI2 are perpendicular to one another. Ground-state absorption spectra of both 5PDI dimers show exciton coupling, which is consistent with the orientation of the 5PDI chromophores relative to one another. Ultrafast transient absorption spectroscopy following excitation of the dimers with 700 nm, 100 fs laser pulses shows that quantitative intradimer electron transfer occurs in cof-5PDI2 in toluene with tau = 0.17 ps followed by charge recombination to the ground state with tau = 222 ps. Similar measurements on lin-5PDI2 reveal that photoinduced electron transfer does not occur in toluene, but occurs in more polar solvents such as 2-methyltetrahydrofuran, wherein tau = 55 ps for charge separation and tau = 99 ps for charge recombination. Excited-state symmetry breaking in 5PDI dimers provides new routes to biomimetic charge separation and storage assemblies that can be more easily prepared and modified than those based on multiple tetrapyrrole macrocycles.  相似文献   

4.
Among various perylenediimide(PDI)-based small molecular non-fullerene acceptors(NFAs), PDI dimer can effectively avoid the excessive aggregation of single PDI and improve the photovoltaic performance.However, the twist of perylene core in PDI dimer will destroy the effective conjugation. Thus, ring annulation of PDI dimer is a feasible method to balance the film quality and electron transport, but the systematic study has attracted few attentions. Herein, we choose a simple vinylene linked PDI dimer,V-PDI_2, and then conduct further studies on the structure-property-performance relationship of four kinds of derived fused-PDI dimers, namely V-TDI_2, V-FDI_2, V-PDIS_2 and V-PDISe2 respectively. The former two are incorporated thianaphthene and benzofuran at the inside bay positions, and the latter two are fused thiophene and selenophene at the outside bay positions, respectively. Theoretical calculations reveal the inside-and outside-fused structures largely affect the skeleton configuration, the former two tend to be planar structure and the latter two maintain the distorted backbone. The photovoltaic characterizations show that the inside-fused PDI dimers offer high open circuit voltage(V_(OC)), while the outside-fused PDI dimers afford large short-circuit current density(J_(SC)). This variation tendency results from the reasonably tunable energy levels, light absorption, molecular crystallinity and film morphology. As a result,PBDB-T:V-PDISe2 device exhibits the highest power conversion efficiency(PCE) of 6.51%, and PBDB-T:VFDI_2 device realizes the highest V_(OC) of 1.00 V. This contribution indicates that annulation of PDI dimers in outside or inside bay regions is a feasible method to modulate the properties of PDI-based non-fullerene acceptors.  相似文献   

5.
A series of perylene‐3,4,9,10‐bis(dicarboximide) (PDI) dimers linked through the bay regions was systematically synthesized to examine the electronic structures and photophysical properties in dependence on the distance and orientation between the two PDI units. The spectroscopic and electrochemical measurements suggested that the coupling value of a directly linked PDI dimer (PDI)2 is much larger than those of para‐ and meta‐phenylene‐bridged PDI dimers p‐(PDI)2 and m‐(PDI)2. The width of Davydov splitting was quantitatively evaluated to compare the coupling values between the two PDI units in these dimers by absorption spectroscopy in frozen 2‐methyl‐THF. Excimer formation of PDI dimers induced the strong fluorescence quenching and large red‐shifts. Femtosecond transient absorption revealed a broad absorption derived from an excimer in the range from about 600 nm to the near‐IR region. The rate constants of formation and decay of the excimer are strongly dependent on the coupling values. Time‐resolved measurements on ferrocene‐linked p‐(PDI)2 revealed a competition between the photoinduced processes of electron transfer and excimer formation in PhCN, which is in sharp contrast with the sole electron‐transfer process in toluene.  相似文献   

6.
The results of study on the properties of dimers of thiamonomethine-and thiatrimethinecyanines (thiacarbocyanines) in the ground and electronically excited states in aqueous solutions are presented. Dimers of cyanine dyes have the sandwiched structure with near-parallel alignment of the polymethine chains of the monomers in the dimer. The formation of dimers is manifested by two absorption bands of different intensities due to splitting of the S* level of the monomers upon their resonance interaction. Dimers of thiacarbocyanines are characterized by a low fluorescence quantum yield φfl as compared to monomers; however, φfl of dimers of thiamonomethinecyanines are markedly higher than that of monomers. Dimers of cyanine dyes are also characterized by a relatively high quantum yield of intersystem crossing to the triplet state. In the triplet-triplet absorption spectra, two bands of different intensities are revealed, which are due to the splitting of the higher triplet level of the monomers that form the dimer. In the presence of electron donors (ascorbic acid, hydroquinone) and/or acceptors (p-benzoquinone, p-nitroacetophenone, methylviologen), the triplet state of dimers is quenched as a result of electron transfer yielding radical products. Dimers in the triplet state can serve as photosensitizers of redox reactions.  相似文献   

7.
Isomerism heavily influences the optoelectronic properties and self-assembly behavior of compounds and subsequently affects their device performance. Herein, two pairs of isomeric perylene diimide (PDI) dimers, PDI and PDI2, were designed and synthesized. The electron-deficient 9,10-anthraquinone group was employed as the bridge, and thus, the resultant dimers exhibited an acceptor–acceptor–acceptor (A-A-A) structure. To determine the isomeric effects on the optoelectronic properties and photovoltaic performance of these dimers, their absorptivity, luminescence, and redox behavior were studied. Bulk heterojunction organic solar cells based on these four dimers were fabricated and measured. The two PDI dimers exhibited clear differences in photovoltaic performance, whereas the two PDI2 analogues showed similar power conversion efficiencies (PCEs). The PCEs of the two PDI2 dimers are much higher than those of the PDI dimers. These results illustrate that the isomeric effect of PDI dimers is much larger than that of PDI2 dimers on the device performance, and proper expansion of conjugation could improve the device performance.  相似文献   

8.
A new material has been prepared by covalent attachment of a perylene derivative, N‐(carboxyphenyl)‐N′‐(8‐pentadecyl)perylene‐3,4:9,10‐bis(dicarboximide) (PDI‐COOH), to poly(vinyl alcohol) (PVA) by esterification. The perylenediimide (PDI)‐modified PVA polymers are soluble in water and dimethylsulfoxide (DMSO). This solubility is conferred to the insoluble perylene derivative by the water‐soluble polymer. The materials have been characterized by hydrogen‐nuclear magnetic resonance, Fourier transform infrared spectra, X‐ray diffraction, and X‐ray photoelectron spectroscopy confirming the covalent attachment of the PDI to the polymer chains. The significant changes in the crystalline parameters and the thermal stability observed for the polymer after the esterification also confirm the covalent linkage with PDI. In addition, the PDI‐modified PVA shows good fluorescence both in solution (quantum yield ~0.2–0.25) and in solid suggesting that the PDI retains largely its photochemical and photophysical properties after immobilization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3613–3622, 2010  相似文献   

9.
We report on two multi-chromophore building blocks that self-assemble in solution and on surfaces into supramolecular light-harvesting arrays. Each building block is based on perylene-3,4:9,10-bis(dicarboximide) (PDI) chromophores. In one building block, N-phenyl PDI chromophores are attached at their para positions to both nitrogens and the 3 and 6 carbons of pyromellitimide to form a cross-shaped molecule (PI-PDI(4)). In the second building block, N-phenyl PDI chromophores are attached at their para positions to both nitrogens and the 1 and 7 carbons of a fifth PDI to produce a saddle-shaped molecule (PDI(5)). These molecules self-assemble into partially ordered dimeric structures (PI-PDI(4))(2) and (PDI(5))(2) in toluene and 2-methyltetrahydrofuran solutions with the PDI molecules approximately parallel to one another primarily due to pi-pi interactions between adjacent PDI chromophores. On hydrophobic surfaces, PDI(5) grows into rod-shaped nanostructures of average length 130 nm as revealed by atomic force microscopy. Photoexcitation of these supramolecular dimers in solution gives direct evidence of strong pi-pi interactions between the excited PDI chromophore and other PDI molecules nearby based on the observed formation of an excimer-like state in <130 fs with a lifetime of about 20 ns. Multiple photoexcitations of the supramolecular dimers lead to fast singlet-singlet annihilation of the excimer-like state, which occurs with exciton hopping times of about 5 ps, which are comparable to those observed in photosynthetic light-harvesting proteins from green plants.  相似文献   

10.
Mercury chalcogenides HgE (E=O, S, Se, etc.) are described in the literature to possess rather stable bonds with bond dissociation energies between 53 and 30 kcal mol(-1), which is actually difficult to understand in view of the closed-shell electron configuration of the Hg atom in its ground state (...4f(14)5d(10)6s(2)). Based on relativistically corrected many body perturbation theory and coupled-cluster theory [IORAmm/MP4, Feenberg-scaled IORAmm/MP4, IORAmm/CCSD(T)] in connection with IORAmm/B3LYP theory and a [17s14p9d5f]/aug-cc-pVTZ basis set, it is shown that the covalent HgE bond is rather weak (2-7 kcal mol(-1)), the ground state of HgE is a triplet rather than a singlet state, and that the experimental bond dissociation energies have been obtained for dimers (or mixtures of monomers, dimers, and even trimers) Hg2E2 rather than true monomers. The dimers possess association energies of more than 100 kcal mol(-1) due to electrostatic forces between the monomer units. The covalent bond between Hg and E is in so far peculiar as it requires a charge transfer from Hg to E (depending on the electronegativity of E) for the creation of a single bond, which is supported by electrostatic forces. However, a bonding between Hg and E is reduced by strong lone pair-lone pair repulsion to a couple of kcal mol(-1). Since a triplet configuration possesses somewhat lower destabilizing lone pair energies, the triplet state is more stable. In the dimer, there is a Hg-Hg pi bond of bond order 0.66 without any a support. Weak covalent Hg-O interactions are supported by electrostatic bonding. The results for the mercury chalcogenides suggests that all experimental dissociation energies for group-12 chalcogenides have to be revised because of erroneous measurements.  相似文献   

11.
Block-localized wave function (BLW) method, which is a variant of the ab initio valence bond (VB) theory, was employed to explore the nature of resonance-assisted hydrogen bonds (RAHBs) and to investigate the mechanism of synergistic interplay between pi delocalization and hydrogen-bonding interactions. We examined the dimers of formic acid, formamide, 4-pyrimidinone, 2-pyridinone, 2-hydroxpyridine, and 2-hydroxycyclopenta-2,4-dien-1-one. In addition, we studied the interactions in beta-diketone enols with a simplified model, namely the hydrogen bonds of 3-hydroxypropenal with both ethenol and formaldehyde. The intermolecular interaction energies, either with or without the involvement of pi resonance, were decomposed into the Hitler-London energy (DeltaEHL), polarization energy (DeltaEpol), charge transfer energy (DeltaECT), and electron correlation energy (DeltaEcor) terms. This allows for the examination of the character of hydrogen bonds and the impact of pi conjugation on hydrogen bonding interactions. Although it has been proposed that resonance-assisted hydrogen bonds are accompanied with an increasing of covalency character, our analyses showed that the enhanced interactions mostly originate from the classical dipole-dipole (i.e., electrostatic) attraction, as resonance redistributes the electron density and increases the dipole moments in monomers. The covalency of hydrogen bonds, however, changes very little. This disputes the belief that RAHB is primarily covalent in nature. Accordingly, we recommend the term "resonance-assisted binding (RAB)" instead of "resonance-assisted hydrogen bonding (RHAB)" to highlight the electrostatic, which is a long-range effect, rather than the electron transfer nature of the enhanced stabilization in RAHBs.  相似文献   

12.
The spontaneous copolymerization of 4‐vinylpyridine (4‐VP) activated with lithium perchlorate (LiClO4) with various electron rich monomers (p‐methoxystyrene, MeOSt; p‐methylstyrene, MeSt; styrene, St) was investigated in various solvent systems at 75°C. Increasing the LiClO4 concentration and the nucleophilicity of the electron rich monomer increased the copolymer yields. Both 1H‐NMR and elemental analysis confirmed the almost 1:1 copolymer structure for VP/MeOSt system which possessed high molecular weight and narrow polydispersity (PDI). Compared to 4‐VP activated with zinc chloride, LiClO4 systems showed slightly lower yields and much narrower PDI. We also investigated the spontaneous copolymerization of 4‐VP activated with various protic acids in the reaction with various electron rich comonomers. However, generally protic salt forms showed less solubility in organic solvents and showed low molecular weight polymer products with low yields. The proposed initiation mechanism exhibits the formation of a σ‐bond between the β‐carbons of the two donor‐acceptor monomers, creating the 1,4‐tetramethylene biradical intermediate initiating the copolymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1709–1716, 1999  相似文献   

13.
Heat-induced aggregation of bovine β-lactoglobulin AB (10 mg/ml) was studied at 68.5 °C at two different pH values (6.7, 4.9) using gel electrophoresis techniques and matrix-assisted laser desorption ionization mass spectrometry (MALDI–TOF MS). Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE) analysis under non-reducing and reducing conditions showed that in the early stages of the aggregation of β-lactoglobulin disulfide linked aggregates were formed on heating at pH 6.7, but not at pH 4.9. We related this result to the pH-dependent activity of the free thiol group at C121. Mass spectrometric analyses were conducted in two steps. The first involved the analysis of intact non-native monomers and dimers following their ultrasonic passive elution into a suitable solvent mixture in order to confirm the identity of the different gel bands. The second step comprises the analysis of in-gel digests for the determination of disulfide patterns in non-native monomers, covalent dimers and trimers. The results of in-gel digestions analyzed by mass spectrometry suggest that non-native dimers could result from the formation of inter-molecular disulfide bonds C121–C66, C160–C160, or C121–C160. Moreover, two inter-molecular bonds C121–C66 and C160–C160 between two and the same monomer units have been detected, which may play an important role in limiting the process of covalent β-lactoglobulin network formation. The combination of SDS–PAGE and MALDI–TOF MS enables us to understand the mechanism of β-lactoglobulin aggregation at the macromolecular level.  相似文献   

14.
We report the synthesis and photophysical characterization of a series of hexa-peri-hexabenzocoronene (HBC)/perylenetetracarboxy diimide (PDI) dyads that are covalently linked with a rigid bridge. Both the ratio of the two components and the conjugation of the bridging element are systematically modified to study the influence on self-assembly and energy and electron transfer between electron donor HBC and acceptor PDI. STM and 2D-WAXS experiments reveal that both in solution and in bulk solid state the dyads assemble into well-ordered two-dimensional supramolecular structures with controllable mutual orientations and distances between donor and acceptor at a nanoscopic scale. Depending on the symmetry of the dyads, either columns with nanosegregated stacks of HBC and PDI or interdigitating networks with alternating HBC and PDI moieties are observed. UV-vis, photoluminescence, transient photoluminescence, and transient absorption spectroscopy confirm that after photoexcitation of the donor HBC a photoinduced electron transfer between HBC and PDI can only compete with the dominant F?rster resonance energy transfer, if facilitated by an intimate stacking of HBC and PDI with sufficient orbital overlap. However, while the alternating stacks allow efficient electron transfer, only the nanosegregated stacks provide charge transport channels in bulk state that are a prerequisite for application as active components in thin film electronic devices. These results have important implications for the further design of functional donor-acceptor dyads, being promising materials for organic bulk heterojunction solar cells and field-effect transistors.  相似文献   

15.
Study of the non‐covalent molecular complexes in gas phase by electrospray ionization mass spectrometry (ESI‐MS) represents a promising strategy to probe the intrinsic nature of these complexes. ESI‐MS investigation of a series of synthetic octapeptides containing six alanine and two lysine residues differing only by their positions showed the formation of non‐covalent dimers, which were preserved in the gas phase. Unlike the monomers, the dimers were found to show only singly protonated state. The decrease in the solvent polarity from water to alcohol showed enhanced propensity of formation of the dimer indicating that the electrostatic interaction plays a crucial role to stabilize the dimer. Selective functionalization studies showed that ε‐NH2 of lysine and C‐terminal amide (? CONH2) facilitate the dimerization through intermolecular hydrogen bonding network. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The relative reactivity of vinyl monomers characterized by electron donor and electron acceptor properties in free radical terpolymerization with maleic anhydride has been compared on the basis of product composition analysis. Terpolymers containing ca. 50 mol % of maleic anhydride were obtained in systems containing two electron donor monomers and the relative reactivity of them increases in the following order: 1-hexene < propylene ≈ isobutylene < styrene < isoprene < 1,3-butadiene. In systems consisting of an electron donor monomer and two electron acceptor monomers (i.e., maleic anhydride and an acrylic monomer), the composition of the terpolymers formed depends essentially on the resonance stabilization of the electron donor monomer. With a rise of their resonance stabilization, the content of acrylic monomeric units decreases and the share of alternating sequences of the electron donor and maleic anhydride monomeric units increases. It was found that the relative reactivity of maleic anhydride in all such systems is much greater than that predicted on the basis of reactivity ratios determined in binary systems. The relative reactivity of the studied acrylic monomers decreases in the order: methyl methacrylate > methyl acrylate > acrylonitrile. In the presence of catalytic amounts of ZnCl2 the content of acrylic monomeric units clearly increases in the products obtained, mainly as a result of homopropagation. The results obtained are discussed in terms of the classical mechanism of propagation and the complex participation model.  相似文献   

17.
Binary complexes of α-hydroxy acids (L-Tartaric acid and L-Malic acid) with d-electron metal ions (copper, cobalt, nickel) were investigated. Potentiometric measurements have been performed in aqueous solution with computer analysis of the data for determination of the stability constants of complexes formed in the studied systems. The coordination mode of the complexes was defined using spectroscopic methods: electron paramagnetic resonance (EPR), ultraviolet-visible (UV-Vis), circular dichroism (CD), and infrared (IR). Results of the equilibrium studies have provided evidence for the formation of dimers with copper(II) ions and monomers with cobalt(II) and nickel(II) ions.  相似文献   

18.
The covalent and ionic clusters of ammonium nitrate and hydroxyl ammonium nitrate are characterized using density functional theory and second-order vibrational perturbation theory. The most stable structures are covalent acid-base pairs for the monomers and ionic acid-base pairs for the dimers. The hydrogen-bonding distances are greater in the ionic dimers than in the covalent monomers, and the stretching frequencies are significantly different in the covalent and ionic clusters. The anharmonicity of the potential energy surfaces is found to influence the geometries, frequencies, and nuclear magnetic shielding constants for these systems. The inclusion of anharmonic effects significantly decreases many of the calculated vibrational frequencies in these clusters and improves the agreement of the calculated frequencies with the experimental data available for the isolated neutral species. The calculations of nuclear magnetic shielding constants for all nuclei in these clusters illustrate that quantitatively accurate predictions of nuclear magnetic shieldings for comparison to experimental data require the inclusion of anharmonic effects. These calculations of geometries, frequencies, and shielding constants provide insight into the significance of anharmonic effects in ionic materials and provide data that will be useful for the parametrization of molecular mechanical force fields for ionic liquids. Anharmonic effects will be particularly important for the study of proton transfer reactions in ionic materials.  相似文献   

19.
A bichromophoric electron donor-acceptor molecule composed of a zinc tetraphenylporphyrin (ZnTPP) surrounded by four perylene-3,4:9,10-bis(dicarboximide)(PDI) chromophores (ZnTPP-PDI(4)) was synthesized. The properties of this molecule were compared to a reference molecule having ZnTPP covalently bound to a single PDI (ZnTPP-PDI). In toluene, ZnTPP-PDI(4) self-assembles into monodisperse aggregates of five molecules arranged in a columnar stack, (ZnTPP-PDI(4))(5). The monodisperse nature of this assembly contrasts sharply with previously reported ZnTPP-PDI(4) derivatives having 1,7-bis(3,5-di-t-butylphenoxy) groups (ZnTPP-PPDI(4)). The size and structure of this assembly in solution was determined by small angle X-ray scattering (SAXS) using a high flux synchrotron X-ray source. The ZnTPP-PDI reference molecule does not aggregate. Femtosecond transient absorption spectroscopy shows that laser excitation of both ZnTPP-PDI and (ZnTPP-PDI(4))(5) results in quantitative formation of ZnTPP(+*)-PDI(-*) radical ion pairs in a few picoseconds. The transient absorption spectra of (ZnTPP-PDI(4))(5) suggest that the PDI(-*) radicals interact strongly with adjacent PDI molecules within the columnar stack. Charge recombination occurs more slowly within (ZnTPP-PDI(4))(5)(tau= 4.8 ns) than it does in ZnTPP-PDI (tau= 3.0 ns) producing mostly ground state as well as a modest yield of the lowest triplet state of PDI ((3*)PDI). Formation of (3*)PDI occurs by rapid spin-orbit induced intersystem crossing (SO-ISC) directly from the singlet radical ion pair as evidenced by the electron spin polarization pattern exhibited by its time-resolved electron paramagnetic resonance spectrum.  相似文献   

20.
Zinc tetrabenzotetraphenyl porphyrin (ZnTBTPP) covalently attached to four perylenediimide (PDI) acceptors self‐assembles into a π‐stacked, segregated columnar structure, as indicated by small‐ and wide‐angle X‐ray scattering. Photoexcitation of ZnTBTPP rapidly produces a long‐lived electron–hole pair having a 26 Å average separation distance, which is much longer than if the pair is confined within the covalent monomer. This implies that the charges are mobile within their respective segregated ZnTBTPP and PDI charge conduits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号