首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of an ongoing investigation into transient pressure pulses using Shannon entropy. Pressure fluctuations (produced by gas–solid two-phase flow during fluidized dense-phase conveying) are recorded by pressure transducers installed at strategic locations along a pipeline. This work validates previous work on identifying the flow mode from pressure signals (Mittal, Mallick, & Wypych, 2014). Two different powders, namely fly ash (median particle diameter 45 μm, particle density 1950 kg/m3, loosely poured bulk density 950 kg/m3) and cement (median particle diameter 15 μm, particle density 3060 kg/m3, loosely poured bulk density 1070 kg/m3), are conveyed through different pipelines (51 mm I.D. × 70 m length and 63 mm I.D. × 24 m length). The transient nature of pressure fluctuations (instead of steady-state behavior) is considered in investigating flow characteristics. Shannon entropy is found to increase along straight pipe sections for both solids and both pipelines. However, Shannon entropy decreases after a bend. A comparison of Shannon entropy among different ranges of superficial air velocity reveals that high Shannon entropy corresponds to very low velocities (i.e. 3–5 m/s) and very high velocities (i.e. 11–14 m/s) while low Shannon entropy corresponds to mid-range velocities (i.e. 6–8 m/s).  相似文献   

2.
A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas–solid flows in vertical pneumatic conveyor. An axisymmetric 2-dimensional, vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain, same to that used for experimentation in the literature. The chosen particles are spherical, of diameter 1.91 mm and density 2500 kg/m3. Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles. Flow regimes transition and pressure drop were predicted. Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe. It was found that the voidage has a minimum, and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime. Slug length and pressure fluctuation reduction were predicted with increasing gas velocity, too. It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.  相似文献   

3.
This paper presents results of an ongoing investigation into modelling fluidized dense-phase pneumatic conveying of powders. For the reliable design of dense-phase pneumatic conveying systems, an accurate estimation of the blockage boundary condition or the minimum transport velocity requirement is of sig- nificant importance. The existing empirical models for fine powder conveying in fluidized dense-phase mode are either based on only a particular pipeline and product or have not been tested for their accuracy under a wide range of scale-up conditions. In this paper, a validated test design procedure has been devel- oped to accurately scale-up the blockage boundary with the help of a modelling format that employs solids loading ratio and Froude number at pipe inlet conditions using conveying data of two different samples of fly ash, electro-static precipitation (ESP) dust and cement (particle densities: 2197-3637 kgJm3; loose poured bulk densities: 634-1070kg/m3; median size: 7-30 l~m). The developed models (in power func- tion format) have been used to predict the blockage boundary for larger diameter and longer pipelines (e.g. models based on 69 mm I.D. ~ 168 m long pipe have been scaled up to 105 mm I.D. and 554 m length). The predicted blockage boundaries for the scale-up conditions were found to provide better accuracy compared to the existing models.  相似文献   

4.
An accurate estimation of the total pressure drop of a pipeline is important to the reliable design of a pneumatic conveying system. The present paper presents results from an investigation into the modelling of the pressure drop at a bend in the pneumatic conveying of fly ash. Seven existing bend models were used (in conjunction with solids friction models for horizontal and vertical straight pipes, and initial acceleration losses) to predict the total pipeline pressure drop in conveying fly ash (median particle diameter: 30 μm; particle density: 2300 kg/m3; loose-poured bulk density: 700 kg/m3) in three test rigs (pipelines with dimensions of 69 mm inner diameter (I.D.) × 168 m length; 105 mm I.D. × 168 m length; 69 mm I.D. × 554 m length). A comparison of the pneumatic conveying characteristics (PCC) predicted using the seven bend models and experimental results shows that the predicted total pipeline PCC and trends depend on the choice of bend model. While some models predict trends that agree with the experimental results, other models predicted greater bend pressure drops for the dense phase of fly ash than for the dilute phase. Models of Pan, R. (1992). Improving scale-up procedures for the design of pneumatic conveying systems. Doctoral dissertation, University of Wollongong, Australia, Pan, R., & Wypych, P.W. (1998). Dilute and dense phase pneumatic conveying of fly ash. In Proceedings of the sixth International Conference on Bulk Materials Storage and Transportation (pp. 183–189), Wollongong, NSW, Australia and Chambers, A.J., & Marcus, R.D. (1986). Pneumatic conveying calculations. In Proceedings of the second International Conference on Bulk Materials Storage and Transportation (pp. 49–52), Wollongong, Australia reliably predicted the bend losses for systems conveying fly ash over a large range of air flows.  相似文献   

5.
Fine particles play a significant role in many industrial processes. To study the dynamic behavior of fine particle and their deposition in rock fractures, the pneumatic conveying of fine particles (approximately 100 μm in diameter) through a small-scale horizontal slit (0.41 m × 0.025 m) was studied, which is useful for the sealing technology of underground gas drainage in coal mining production. The CFD–DEM method was adopted to model the gas-particle two-phase flow; the gas phase was treated as a continuum and modeled using computational fluid dynamics (CFD), particle motion and collisions were simulated using the DEM code. Then, the bulk movement of fine particles through a small-scale horizontal slit was explored numerically, and the flow patterns were further investigated by visual inspection. The simulation results indicated that stratified flow or dune flow can be observed at low gas velocities. For intermediate gas velocities, the flow patterns showed pulsation phenomena, and dune flow reappeared in the tail section. Moreover, periodic flow regimes with alternating thick and sparse stream structures were observed at a high gas velocity. The simulation results of the bulk movement of fine particles were in good agreement with the experimental findings, which were obtained by video-imaging experiments. Furthermore, the calculated pressure drop versus gas velocity profile was investigated and compared with relative experimental findings, and the results showed good agreement. Furthermore, the particle velocity vectors and voidage distribution were numerically simulated. Selected stimulation results are presented and provide a reference for the further study of fine particles.  相似文献   

6.
Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen were carried out in a test facility at pressures of up to 3.7 MPa to study the effects of coal type, particle size and moisture content on flow characteristics. The Jenike shear test and scanning electron microscopy (SEM) were employed to provide a better understanding of effects of the material properties on flow characteristics. Two kinds of pulverized coals, Yanzhou and Datong, with similar particle size, moisture content and density, were used in the test. Pressure drop increases with increasing the particle size at similar solid–gas ratio, superficial velocity and pressure in the receiving hopper, and pressure drops through different test sections decrease firstly and then rise with increasing the conveying velocity for the same particle size, mass flow rate and pressure in the receiving hopper. The flowability of pulverized coal decreases with increasing the moisture content in the range from 3.24% to 8.18%. Unconfined yield strength (UYS) increases and flow function (FF) decreases with increasing the moisture content. Results of the shearing tests are consistent with the results of the conveying study. Pressure drops through different test sections are discussed and analyzed.  相似文献   

7.
In-line flow segregators based on axial induction of swirling flow have important applications in chemical, process and petroleum production industries. In the later, the segregation of gas bubbles and/or water droplets dispersed into viscous oil by swirling pipe flow may be beneficial by either providing a pre-separation mechanism (bubble and/or drop coalescer) or, in the case of water-in-oil dispersions, by causing a water-lubricated flow pattern to establish in the pipe (friction reduction). Works addressing these applications are rare in the literature. In this paper, the features and capabilities of swirling pipe flow axially induced by a vane-type swirl generator were investigated both numerically and experimentally. The numerical analysis has been carried out using a commercial CFD package for axial Reynolds numbers less than 2000. Pressure drop, tangential and axial velocity components as well as swirl intensity along a 5 cm i.d. size and 3 m long pipe were computed. Single phase flow experiments have been performed using a water–glycerin solution of 54 mPa s viscosity and 1210 kg/m3 density as working fluid. The numerical predictions of the pressure drop were compared with the experimental data and agreement could be observed within the range of experimental conditions. The experiments confirmed that swirl flow leads to much higher friction factors compared with theoretical values for non-swirl (i.e. purely axial) flow. Furthermore, the addition of a conical trailing edge reduces vortex breakdown. Visualization of the two-phase swirling flow pattern was achieved by adding different amounts of air to the water–glycerin solution upstream the swirl generator.  相似文献   

8.
Two-phase oil–water flow was studied in a 15 m long horizontal steel pipe, with 8.28 cm internal diameter, using mineral oil (having 830 kg/m3 density and 7.5 mPa s viscosity) and brine (1073 kg/m3 density and of 0.8 mPa s viscosity). Measurements of the holdup and of the cross-sectional phase fraction distribution were obtained for stratified flow and for highly dispersed oil–water flows, applying a capacitive Wire-Mesh Sensor specially designed for that purpose. The applicability of this measurement technique, which uses a circuit for capacitive measurements that is adapted to conductive measurements, where one of the fluids is water with high salinity (mimicking sea water), was assessed. Values for the phase fraction values were derived from the raw data obtained by the Wire-Mesh Sensor using several mixture permittivity models. Two gamma-ray densitometers allowed the accurate measurement of the holdups, which was used to validate the data acquired with the capacitive Wire-Mesh Sensor. The measured time-averaged distribution of the phase fraction over the cross-sectional area was used to investigate the details of the observed two-phase flow patterns, including the interface shape and water height. The experiments were conducted in the multiphase-flow test facility of Shell Global International B.V. in the Netherlands.  相似文献   

9.
The estimation of the blockage boundary for pneumatic conveying through a slit is of significant importance. In this paper, we investigate the characteristics for blockage of powder (48 μm average diameter) through a horizontal slit (1.6 m × 0.05 m × 0.002 m). The results show that the required critical solid mass flow rate increases as the superficial air velocity increases superficial air velocity. The solid loading ratio and superficial air velocity displayed a decreasing power law relationship. This finding agrees with existing theory and experimental results. However, a minimum inlet solid loading ratio exists. When the air velocity is greater than the corresponding air velocity of the minimum solid loading ratio, the solid loading ratio exhibits an increasing trend in power law. We also found that when the inlet conveying pressure increased, the critical solid mass flow rate required for blockage, the inlet solid loading ratio, and the minimum inlet solid loading ratio increased.  相似文献   

10.
Three-dimensional particle tracking velocimetry (3D-PTV) is applied to particle-laden pipe flows at Reynolds number 10,300, based on the bulk velocity and the pipe diameter. The effects of flow direction (upward or downward) and mean concentration (in the range 0.5 × 10−5–3.2 × 10−5) on the production of turbulence are assessed for inertial particles with a Stokes number equal to 2.3, based on the particle relaxation time and viscous scales. The turbulence production and the Kolmogorov constant, both measured for particle laden flows in upflow and downflow, allowed for the derivation of a break-up criterion as a function of the radial coordinate. This criterion predicts the maximum possible particle size before break-up may occur. It is shown that the maximum particle size is bigger at the pipe centerline than in the near-wall zone by more than a factor of 5. Flow direction affects the particle concentration profile, with wall peaking in downflow and core peaking in upflow. This affects both the residence time and the maximum particle size, the latter by 7%.  相似文献   

11.
In this study, experiments on fly ash conveying were carried out with a home-made long-distance positive-pressure pneumatic conveying system equipped with a high performance electrical capacitance tomography system to observe the transient characteristics of gas–solid two-phase flow. The experimental results indicated that solids throughput increased with increasing solids–gas ratio when the conveying pipeline was not plugged. Moreover, the optimum operating state was determined for the 1000 m long conveying pipeline with a throttle plate of 26 orifices. At this state the solids throughput was about 12.97 t/h. Additionally, the transportation pattern of fly ash gradually changed from sparse–dense flow to partial and plug flows with increasing conveying distance because of the conveying pressure loss. These experimental results provide important reference data for the development of pneumatic conveying technology.  相似文献   

12.
A downward flow of glass bead particles in a vertical pipe is investigated using a two-component LDV/PDPA for a range of Re (6400 < Re < 24,000) and a constant particle loading (m = 0.7). Two particle sizes of 70 and 200 μm are considered in the present work. For the 70 μm particles, the presence of the particles dampens the gas-phase turbulence intensity at the lowest value of Re investigated (8300) compared with the single-phase flow at the same Re. As Re increases, the gas turbulence increases, and for Re > 13,800 the gas turbulence is enhanced compared with the single-phase flow at the same Re. For the 200 μm particles, the intensity also increases with Re and is enhanced for all values of Re investigated, except at the lowest value of Re investigated (6400). At this value, the gas turbulence is equal to that of single-phase flow at the same Re. The observed trend in the gas-phase turbulence modulation with Re is proposed to be due to the change in the segregation patterns and in the average volume fractions of the particles with increasing Re. More importantly, the present experimental results suggest that, consideration of either the gas and particle characteristic length scales or the particle Reynolds number solely is insufficient to predict gas-phase turbulence modulation in gas–particle flows.  相似文献   

13.
Oil–water two-phase flow experiments were conducted in horizontal ducts made of Plexiglas® to determine the in situ oil fraction (holdup) by means of the closing valves technique, using mineral oil (viscosity: 0.838 Pa s at 20 °C; density: 890 kg m−3) and tap water. The ducts present sudden contractions from 50 mm to 40 mm i.d. and from 50 mm to 30 mm i.d., with contraction ratios of 0.64 and 0.36, respectively. About 200–320 tests were performed by varying the flow rates of the phases. Flow patterns were investigated for both the up- and downstream pipe in order to assess whether relevant variations of the flow patterns across the sudden contraction take place. Data were then compared with predictions of a specific correlation for oil–water flow and some correlations for gas–water flow. A drift-flux model was also applied to determine the distribution parameter.  相似文献   

14.
A computational fluid dynamics (CFD) model is used to investigate the hydrodynamics of a gas–solid fluidized bed with two vertical jets. Sand particles with a density of 2660 kg/m3 and a diameter of 5.0 × 10?4 m are employed as the solid phase. Numerical computation is carried out in a 0.57 m × 1.00 m two-dimensional bed using a commercial CFD code, CFX 4.4, together with user-defined Fortran subroutines. The applicability of the CFD model is validated by predicting the bed pressure drop in a bubbling fluidized bed, and the jet detachment time and equivalent bubble diameter in a fluidized bed with a single jet. Subsequently, the model is used to explore the hydrodynamics of two vertical jets in a fluidized bed. The computational results reveal three flow patterns, isolated, merged and transitional jets, depending on the nozzle separation distance and jet gas velocity and influencing significantly the solid circulation pattern. The jet penetration depth is found to increase with increasing jet gas velocity, and can be predicted reasonably well by the correlations of Hong et al. (2003) for isolated jets and of Yang and Keairns (1979) for interacting jets.  相似文献   

15.
Three-dimensional particle tracking velocimetry (3D-PTV) has been applied to particle-laden pipe flow at Reynolds number 10,300, based on the bulk velocity and the pipe diameter. The volume fraction of the inertial particles was equal to 1.4 × 10−5. Lagrangian velocity and acceleration statistics were determined both for tracers and for inertial particles with Stokes number equal to 2.3, based on the particle relaxation time and the viscous time scale. The decay of Lagrangian velocity and acceleration correlation functions was measured both for the fluid and for the dispersed phase at various radial positions. The decay of Lagrangian velocity correlations is faster for inertial particles than for flow tracers, whereas the decay of Lagrangian acceleration correlations is about 25% slower for inertial particles than for flow tracers. Further differences between inertial and tracer particles are found in velocity fluctuations evaluated for both positive and negative time lags. The asymmetry in time of velocity cross-correlations is more pronounced for inertial particles. Quadrant analysis revealed another difference still near the wall: ejection and sweep events are less frequent for inertial particles than for tracers.  相似文献   

16.
The experiments were conducted in 54.9 mm diameter horizontal pipe on two sizes of glass beads of which mean diameter and geometric standard deviation are 440 μm & 1.2 and 125 μm & 1.15, respectively, and a mixture of the two sizes in equal fraction by mass. Flow velocity was up to 5 m/s and overall concentration up to 50% by volume for each velocity. Pressure drop and concentration profiles were measured. The profiles were obtained traversing isokinetic sampling probes in the horizontal, 45° inclined and vertical planes including the pipe axis. Slurry samples of the mixture collected in the vertical plane were analyzed for concentration profiles of each particle batch constituting the mixture. It was found that the pressure drop is decreased for the mixture at high concentrations except 5 m/s and a distinct change of concentration profiles was observed for 440 μm particles indicating a sliding bed regime, while the profiles in the horizontal plane remains almost constant irrespective of flow velocity, overall concentration and slurry type.  相似文献   

17.
To study the influence of back feeding particles on gas-solid flow in the riser, this paper investigated the flow asymmetry in the solid entrance region of a fluidized bed by particle concentration/velocity measurements in a cold square circulating fluidized beds (CFB). The pressure drop distribution along the riser and the saturation carrying capacity of gas for Geldart-B type particles were first analyzed. Under the condition of u0 = 4 m/s and Gs = 21 kg/(m^2 s), the back feeding particles were found to penetrate the lean gas-solid flow near the entrance (rear) wall before reaching the opposite (front) wall, thus leading to a relatively denser region near the front wall in the bottom bed. Higher solid circulation rate (u0 =4 m/s, Gs = 33 kg/(m^2 s)) resulted in a higher particle concentration in the riser. However the back feeding particles with higher momentum increased the asymmetry of the particle concentration/velocity profile in the solid entrance region. Lower air velocity (u0 =3.2 m/s) and Gs =21 kg/(m2 s), beyond the saturation carrying capacity of gas, induced an S-shaped axial solid distribution with a denser bottom zone. This limited the penetration of the back feeding particles and forced the flnidizing air to flow in the central region, thus leading to a higher solid holdup near the rear wall. Under the conditions of uo = 4 m/s and Gs = 21 kg/(m^2 s), addition of coarse particles (dp= 1145 μm) into the bed made the radial distribution of solids more symmetrical.  相似文献   

18.
Solar cracking of methane is considered to be an attractive option due to its CO2 free hydrogen production process. Carbon particle deposition on the reactor window, walls and exit is a major obstacle to achieve continuous operation of methane cracking solar reactors. As a solution to this problem a novel “aero-shielded solar cyclone reactor” was created. In this present study the prediction of particle deposition at various locations for the aero-shielded reactor is numerically investigated by a Lagrangian particle dispersion model. A detailed three dimensional computational fluid dynamic (CFD) analysis for carbon deposition at the reactor window, walls and exit is presented using a Discrete Phase Model (DPM). The flow field is based on a RNG k–ε model and species transport with methane as the main flow and argon/ hydrogen as window and wall screening fluid. Flow behavior and particle deposition have been observed with the variation of main flow rates from 10–20 L/min and with carbon particle mass flow rate of 7 × 10−6 and 1.75 × 10−5 kg/s. In this study the window and wall screening flow rates have been considered to be 1 L/min and 10 L/min by employing either argon or hydrogen. Also, to study the effect of particle size simulations have also been carried out (i) with a variation of particle diameter with a size distribution of 0.5–234 μm and (ii) by taking 40 μm mono sized particles which is the mean value for the considered size distribution. Results show that by appropriately selecting the above parameters, the concept of the aero-shielded reactor can be an attractive option to resolve the problem of carbon deposition at the window, walls and exit of the reactor.  相似文献   

19.
This research focuses on acquiring accurate flow boiling heat transfer data and flow pattern visualization for three refrigerants, R134a, R236fa and R245fa in a 1.030 mm channel. We investigate trends in the data, and their possible mechanisms, for mass fluxes from 200 to 1600 kg/m2s, heat fluxes from 2.3 kW/m2 to 250 kW/m2 at Tsat = 31 °C and ΔTsub from 2 to 9 K. The local saturated flow boiling heat transfer coefficients display a heat flux and a mass flux dependency but no residual subcooling influence. The changes in heat transfer trends correspond well with flow regime transitions. These were segregated into the isolated bubble (IB) regime, the coalescing bubble (CB) regime, and the annular (A) regime for the three fluids. The importance of nucleate boiling and forced convection in these small channels is still relatively unclear and requires further research.  相似文献   

20.
An optical measurement method using image processing for two-phase flow pattern characterization in minichannel is developed. The bubble frequency, the percentage of small bubbles as well as their velocity are measured. A high-speed high-definition video camera is used to measure these parameters and to identify the flow regimes and their transitions. The tests are performed in a 3.0 mm glass channel using saturated R-245fa at 60 °C (4.6 bar). The mass velocity is ranging from 100 to 1500 kg/m2 s, the heat flux is varying from 10 to 90 kW/m2 and the inlet vapor quality from 0 to 1. Four flow patterns (bubbly flow, bubbly–slug flow, slug flow and annular flow) are recognized. The comparison between the present experimental intermittent/annular transition lines and five transition lines from macroscale and microscale flow pattern maps available in the literature is presented. Finally, the influence of the flow pattern on the heat transfer coefficient is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号