首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
The first planar π‐extended azulene that retains aromaticity of odd‐membered rings was synthesized by [3+3] peri‐annulation of two naphthalene imides at both long‐edge sides of azulene. Using bromination and subsequent nucleophilic substitution by methoxide and morpholine, selective functionalization of the π‐extended azulene was achieved. Whilst these new azulenes can be regarded as isomers of terrylene bisimide they exhibit entirely different properties, which include very narrow optical and electrochemical gaps. DFT, TD‐DFT, as well as nucleus‐independent chemical shift calculations were applied to explain the structural and functional properties of these new π scaffolds. Furthermore, X‐ray crystallography confirmed the planarity of the reported π‐scaffolds and aromaticity of their azulene moiety.  相似文献   

3.
4.
5.
This article describes a series of nine complexes of boron difluoride with 2′‐hydroxychacone derivatives. These dyes were synthesized very simply and exhibited intense NIR emission in the solid state. Complexation with boron was shown to impart very strong donor–acceptor character into the excited state of these dyes, which further shifted their emission towards the NIR region (up to 855 nm for dye 5 b , which contained the strongly donating triphenylamine group). Strikingly, these optical features were obtained for crystalline solids, which are characterized by high molecular order and tight packing, two features that are conventionally believed to be detrimental to luminescence in organic crystals. Remarkably, the emission of light from the π‐stacked molecules did not occur at the expense of the emission quantum yield. Indeed, in the case of pyrene‐containing dye 4 , for example, a fluorescence quantum yield of about 15 % with a fluorescence emission maximum at 755 nm were obtained in the solid state. Moreover, dye 3 a and acetonaphthone‐based compounds 1 b , 2 b , and 3 b showed no evidence of degradation as solutions in CH2Cl2 that contained EtOH. In particular, solutions of brightly fluorescent compound 3 a (brightness: ε×Φf=45 000 M ?1 cm?1) could be stored for long periods without any detectable changes in its optical properties. All together, these new dyes possess a set of very interesting properties that make them promising solid‐state NIR fluorophores for applications in materials science.  相似文献   

6.
7.
8.
DNA has been used as a scaffold to stabilize small, atomically monodisperse silver nanoclusters, which have attracted attention due to their intriguing photophysical properties. Herein, we describe the X‐ray crystal structure of a DNA‐encapsulated, near‐infrared emitting Ag16 nanocluster (DNA–Ag16NC). The asymmetric unit of the crystal contains two DNA–Ag16NCs and the crystal packing between the DNA–Ag16NCs is promoted by several interactions, such as two silver‐mediated base pairs between 3′‐terminal adenines, two phosphate–Ca2+–phosphate interactions, and π‐stacking between two neighboring thymines. Each Ag16NC is confined by two DNA decamers that take on a horse‐shoe‐like conformation and is almost fully shielded from the solvent environment. This structural insight will aid in the determination of the structure/photophysical property relationship for this class of emitters and opens up new research opportunities in fluorescence imaging and sensing using noble‐metal clusters.  相似文献   

9.
《化学:亚洲杂志》2017,12(22):2908-2915
A series of unsymmetrical (D‐A‐D1, D1‐π‐D‐A‐D1, and D1‐A1‐D‐A2‐D1; A=acceptor, D=donor) and symmetrical (D1‐A‐D‐A‐D1) phenothiazines ( 4 b , 4 c , 4 c′ , 5 b , 5 c , 5 d , 5 d′ , 5 e , 5 e′ , 5 f , and 5 f′ ) were designed and synthesized by a [2+2] cycloaddition–electrocyclic ring‐opening reaction of ferrocenyl‐substituted phenothiazines with tetracyanoethylene (TCNE) and 7,7,8,8‐tetracyanoquinodimethane (TCNQ). The photophysical, electrochemical, and computational studies show a strong charge‐transfer (CT) interaction in the phenothiazine derivatives that can be tuned by varying the number of TCNE/TCNQ acceptors. Phenothiazines 4 b , 4 c , 4 c′ , 5 b , 5 c , 5 d , 5 d′ , 5 e , 5 e′ , 5 f and 5 f′ show redshifted absorption in the λ =400 to 900 nm region, as a result of a low HOMO–LUMO gap, which is supported by TD‐DFT calculations. The electrochemical study exhibits reduction waves at low potential due to strong 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) and cyclohexa‐2,5‐diene‐1,4‐ylidene‐expanded TCBD acceptors. The incorporation of cyclohexa‐2,5‐diene‐1,4‐ylidene‐expanded TCBD stabilized the LUMO energy level to a greater extent than TCBD.  相似文献   

10.
The synthesis of hydrophilic lanthanide‐doped nanocrystals (Ln3+‐NCs) with molecular recognition ability for bioimaging currently remains a challenge. Herein, we present an effective strategy to circumvent this bottleneck by encapsulating Ln3+‐NCs in graphene oxide (NCs@GO). Monodisperse NCs@GO was prepared by optimizing GO size and core–shell structure of NaYF4:Yb,Er@NaYF4, thus combining the intense visible/near‐infrared II (NIR‐II) luminescence of NCs and the unique surface properties and biomedical functions of GO. Such nanostructures not only feature broad solvent dispersibility, efficient cell uptake, and excellent biocompatibility but also enable further modifications with various agents such as DNA, proteins, or nanoparticles without tedious procedures. Moreover, we demonstrate in proof‐of‐concept experiments that NCs@GO can realize simultaneous intracellular tracking and microRNA‐21 visualization, as well as highly sensitive in vivo tumor‐targeted NIR‐II imaging at 1525 nm.  相似文献   

11.
Fluorescence probes in the NIR‐IIa region show drastically improved imaging owing to the reduced photon scattering and autofluorescence in biological tissues. Now, NIR‐IIa polymer dots (Pdots) are developed with a dual fluorescence enhancement mechanism. First, the aggregation induced emission of phenothiazine was used to reduce the nonradiative decay pathways of the polymers in condensed states. Second, fluorescence quenching was minimized by different levels of steric hindrance to further boost the fluorescence. The resulting Pdots displayed a fluorescence QY of ca. 1.7 % in aqueous solution, suggesting an enhancement of ca. 21 times in comparison with the original polymer in tetrahydrofuran (THF) solution. Small‐animal imaging by using the NIR‐IIa Pdots exhibited a remarkable improvement in penetration depth and signal to background ratio, as confirmed by through‐skull and through‐scalp fluorescent imaging of the cerebral vasculature of live mice.  相似文献   

12.
Cyanines comprising either a benzo[e]‐ or benzo[c,d]indolium core facilitate initiation of radical photopolymerization combined with high power NIR‐LED prototypes emitting at 805 nm, 860 nm, or 870 nm, while different oxime esters function as radical coinitiators. Radical photopolymerization followed an initiation mechanism based on the participation of excited states, requiring additional thermal energy to overcome an existing intrinsic activation barrier. Heat released by nonradiative deactivation of the sensitizer favored the system, even under conditions where a thermally activated photoinduced electron transfer controls the reaction protocol. The heat generated internally by the NIR sensitizer promotes generation of the initiating reactive radicals. Sensitizers with a barbiturate group at the meso‐position preferred to bleach directly, while sensitizers carrying a cyclopentene moiety unexpectedly initiated the photosensitized mechanism.  相似文献   

13.
14.
Fluorescence‐guided cytoreductive surgery is one of the most promising approaches for facile elimination of tumors in situ, thereby improving prognosis. Reported herein is a simple strategy to construct a novel chainlike NIR‐II nanoprobe (APP‐Ag2S‐RGD) by self‐assembly of an amphiphilic peptide (APP) into a nanochain with subsequent chemical crosslinking of NIR‐II Ag2S QDs and the tumor‐targeting RGD peptide. This probe exhibits higher capability for cancer cell detection compared with that of RGD‐functionalized Ag2S QDs (Ag2S‐RGD) at the same concentration. Upon intraperitoneal injection, superior tumor‐to‐normal tissue signal ratio is achieved and non‐vascularized tiny tumor metastatic foci as small as about 0.2 mm in diameter could be facilely eliminated under NIR‐II fluorescent imaging guidance. These results clearly indicate the potential of this probe for fluorescence‐guided tumor staging, preoperative diagnosis, and intraoperative navigation.  相似文献   

15.
16.
Two‐NIR‐photon‐triggered ZE isomerization of an azobenzene was accomplished by covalently linking a two‐photon‐harvesting triarylamine antenna to a thermally stable ortho‐fluorinated azobenzene derivative. The obtained photoswitch is fully addressable with visible and NIR light by using one‐photon and two‐photon excitation, respectively, with the latter offering enhanced penetration depth and improved spatial resolution.  相似文献   

17.
Photothermal therapy at the NIR‐II biowindow (1000–1350 nm) is drawing increasing interest because of its large penetration depth and maximum permissible exposure. Now, the supramolecular radical dimer, fabricated by N,N′‐dimethylated dipyridinium thiazolo[5,4‐d]thiazole radical cation (MPT.+) and cucurbit[8]uril (CB[8]), achieves strong absorption at NIR‐II biowindow. The supramolecular radical dimer (2MPT.+‐CB[8]) showed highly efficient photothermal conversion and improved stability, thus contributing to the strong inhibition on HegG2 cancer cell under 1064 nm irradiation even penetrating through chicken breast tissue. This work provides a novel approach to construct NIR‐II chromophore by tailor‐made assembly of organic radicals. It is anticipated that this study provides a new strategy to achieve NIR‐II photothermal therapy and holds promises in luminescence materials, optoelectronic materials, and also biosensing.  相似文献   

18.
19.
20.
The photophysical and nonlinear optical properties of water‐soluble chromophore‐functionalised tris‐dipicolinate complexes [LnL3]3? (Ln=Yb and Nd) are thoroughly studied, revealing that only the YbIII luminescence can be sensitized by a two‐photon excitation process. The stability of the complex in water is strongly enhanced by embedding in dispersible organosilicate nanoparticles (NPs). Finally, the spectroscopic properties of [NBu4]3[YbL3] are studied in solution and in the solid state. The high brightness of the NPs allows imaging them as single objects using a modified two‐photon microscopy setup in a NIR‐to‐NIR configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号