首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Electronic thermal conductivity κe is investigated, using Boltzmann transport equation approach, in a suspended and supported bilayer graphene (BLG) as a function of temperature and electron concentration. The electron scattering due to screened charged impurity, short-range disorder and acoustic phonon via deformation potential are considered for both suspended and supported BLG. Additionally, scattering due to surface polar phonons, is considered in supported BLG. In suspended BLG, calculated κe is compared with the experimental data leaving the phonon thermal conductivity. It is emphasized that κe is important in samples with very high electron concentration and reduced phonon thermal conductivity. κe is found to be about two times smaller in supported BLG compared to that in suspended BLG. With the reduced extrinsic disorders, in principle, the intrinsic scattering by acoustic phonons can set a fundamental limit on possible intrinsic κe.  相似文献   

2.
We report on the first systematic study of spin transport in bilayer graphene (BLG) as a function of mobility, minimum conductivity, charge density, and temperature. The spin-relaxation time τ(s) scales inversely with the mobility μ of BLG samples both at room temperature (RT) and at low temperature (LT). This indicates the importance of D'yakonov-Perel' spin scattering in BLG. Spin-relaxation times of up to 2 ns at RT are observed in samples with the lowest mobility. These times are an order of magnitude longer than any values previously reported for single-layer graphene (SLG). We discuss the role of intrinsic and extrinsic factors that could lead to the dominance of D'yakonov-Perel' spin scattering in BLG. In comparison to SLG, significant changes in the carrier density dependence of τ(s) are observed as a function of temperature.  相似文献   

3.
We study both monolayer and bilayer graphene transport properties taking into account the presence of correlations in the spatial distribution of charged impurities. In particular we find that the experimentally observed sublinear scaling of the graphene conductivity can be naturally explained as arising from impurity correlation effects in the Coulomb disorder, with no need to assume the presence of short-range scattering centers in addition to charged impurities. We find that also in bilayer graphene, correlations among impurities induce a crossover of the scaling of the conductivity at higher carrier densities. We show that in the presence of correlation among charged impurities the conductivity depends nonlinearly on the impurity density ni and can increase with ni.  相似文献   

4.
杨翠红  徐文  李庆芳 《光学学报》2012,32(1):126001-272
在外加垂直磁场的石墨烯系统中,基于格林函数方法以自能的形式理论研究了电荷杂质散射和光学声子散射中心对朗道能谱的影响,采用久保(Kubo)公式研究了单层石墨烯的磁光电导谱以及跃迁选择定则。具体计算中电子-杂质库仑相互作用考虑了介电环境的屏蔽效应,对由散射引起的自能以及单粒子格林函数做自洽计算,另外在强磁场下单杂质散射是一个很好的近似模型。理论计算结果表明电荷杂质散射引起朗道能级对称展宽;同时考虑电荷杂质和光学声子两类散射后态密度表现为非对称的展宽。研究结果表明磁光电导谱的峰值和强度强烈依赖于填充因子和态密度。  相似文献   

5.
Carrier transport in gated 2D graphene monolayers is considered in the presence of scattering by random charged impurity centers with density n(i). Excellent quantitative agreement is obtained (for carrier density n>10(12) cm(-2)) with existing experimental data. The conductivity scales linearly with n/n(i) in the theory. We explain the experimentally observed asymmetry between electron and hole conductivities, and the high-density saturation of conductivity for the highest mobility samples. We argue that the experimentally observed saturation of conductivity at low density arises from the charged impurity induced inhomogeneity in the graphene carrier density which becomes severe for n less, similarn(i) approximately 10(12) cm(-2).  相似文献   

6.
We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for the use of graphene for spin-based logic and information storage applications.  相似文献   

7.
The third group of elements is the acceptor of P-type silicon carbide (SiC). Therefore, studying the transport properties of group III doped SiC nanotube (SiCNTs) and revealing the carrier scattering mechanism have important scientific significance for improving the photoelectric properties and promoting the development of SiC nano-devices. In this article, the lattice structure and transport properties of IIIA-doped SiCNTs are investigated systematically using density functional theory. According to the first principle data, we calculate the temperature characteristics of the conductivity, carrier concentration, and mobility, then, analyze the contributions of optical phonon, ionized impurity, neutral impurity and inter-carrier scattering to the mobility. The calculation results show that the conductivity of IIIA-doped SiCNTs decreased with increasing temperature in the temperature range below 200 K, above 200 K, the conductivity increases with increasing temperature. The main scattering mechanisms are optical phonon scattering and neutral impurity scattering. In application, this results will help the selection of SiCNTs acceptor.  相似文献   

8.
We review the physics of charged impurities in the vicinity of graphene. The long-range nature of Coulomb impurities affects both the nature of the ground state density profile and graphene’s transport properties. We discuss the screening of a single Coulomb impurity and the ensemble averaged density profile of graphene in the presence of many randomly distributed impurities. Finally, we discuss graphene’s transport properties due to scattering off charged impurities both at low and high carrier density.  相似文献   

9.
We have measured the impact of calcium adsorbates on the transport property of graphene. Although calcium renders conductivity linearly dependent on the carrier density of graphene as predicted, our experimental results diverge from the existing theoretical calculations. Our data expose the inadequacy of any existing theory to describe the minimum conductivity of graphene and indicate that a more complete testing of the impurity scattering calculations will require improving the experimental capabilities by minimizing the contribution from the substrate-bound charged impurities and developing an ability to count the number of adsorbates while measuring transport.  相似文献   

10.
The conductivity of graphene samples with various levels of disorder is investigated for a set of specimens with mobility in the range of 1-20x10(3) cm2/V sec. Comparing the experimental data with the theoretical transport calculations based on charged impurity scattering, we estimate that the impurity concentration in the samples varies from 2-15x10(11) cm(-2). In the low carrier density limit, the conductivity exhibits values in the range of 2-12e2/h, which can be related to the residual density induced by the inhomogeneous charge distribution in the samples. The shape of the conductivity curves indicates that high mobility samples contain some short-range disorder whereas low mobility samples are dominated by long-range scatterers.  相似文献   

11.
We theoretically revisit graphene transport properties as a function of carrier density, taking into account possible correlations in the spatial distribution of the Coulomb impurity disorder in the environment. We find that the charged impurity correlations give rise to a density-dependent graphene conductivity, which agrees well qualitatively with the existing experimental data. We also find, quite unexpectedly, that the conductivity could increase with increasing impurity density if there is sufficient interimpurity correlation present in the system. In particular, the linearity (sublinearity) of graphene conductivity at lower (higher) gate voltage is naturally explained as arising solely from impurity correlation effects in the Coulomb disorder.  相似文献   

12.
We investigate spin relaxation in graphene spin valves and observe strongly contrasting behavior for single-layer graphene (SLG) and bilayer graphene (BLG). In SLG, the spin lifetime (τ(s)) varies linearly with the momentum scattering time (τ(p)) as carrier concentration is varied, indicating the dominance of Elliot-Yafet (EY) spin relaxation at low temperatures. In BLG, τ(s) and τ(p) exhibit an inverse dependence, which indicates the dominance of Dyakonov-Perel spin relaxation at low temperatures. The different behavior is due to enhanced screening and/or reduced surface sensitivity of BLG, which greatly reduces the impurity-induced EY spin relaxation.  相似文献   

13.
The longitudinal optical (LO) phonon energy in AlGaN/GaN heterostructures is determined from temperature-dependent Hall effect measurements and also from Infrared (IR) spectroscopy and Raman spectroscopy. The Hall effect measurements on AlGaN/GaN heterostructures grown by MOCVD have been carried out as a function of temperature in the range 1.8-275 K at a fixed magnetic field. The IR and Raman spectroscopy measurements have been carried out at room temperature. The experimental data for the temperature dependence of the Hall mobility were compared with the calculated electron mobility. In the calculations of electron mobility, polar optical phonon scattering, ionized impurity scattering, background impurity scattering, interface roughness, piezoelectric scattering, acoustic phonon scattering and dislocation scattering were taken into account at all temperatures. The result is that at low temperatures interface roughness scattering is the dominant scattering mechanism and at high temperatures polar optical phonon scattering is dominant.  相似文献   

14.
Transport in graphene nanoribbons with an energy gap in the spectrum is considered in the presence of random charged impurity centers. At low carrier density, we predict and establish that the system exhibits a density inhomogeneity driven two dimensional metal-insulator transition that is in the percolation universality class. For very narrow graphene nanoribbons (with widths smaller than the disorder induced length scale), we predict that there should be a dimensional crossover to the 1D percolation universality class with observable signatures in the transport gap. In addition, there should be a crossover to the Boltzmann transport regime at high carrier densities. The measured conductivity exponent and the critical density are consistent with this percolation transition scenario.  相似文献   

15.
Graphene–oxide hybrid structures offer the opportunity to combine the versatile functionalities of oxides with the excellent electronic transport in graphene. Understanding and controlling how the dielectric environment affects the intrinsic properties of graphene is also critical to fundamental studies and technological development of graphene. Here we review our recent effort on understanding the transport properties of graphene interfaced with ferroelectric Pb(Zr,Ti)O3 (PZT) and high-κ HfO2. Graphene field effect devices prepared on high-quality single crystal PZT substrates exhibit up to tenfold increases in mobility compared to SiO2-gated devices. An unusual and robust resistance hysteresis is observed in these samples, which is attributed to the complex surface chemistry of the ferroelectric. Surface polar optical phonons of oxides in graphene transistors play an important role in the device performance. We review their effects on mobility and the high source-drain bias saturation current of graphene, which are crucial for developing graphene-based room temperature high-speed amplifiers. Oxides also introduce scattering sources that limit the low temperature electron mobility in graphene. We present a comprehensive study of the transport and quantum scattering times to differentiate various scattering scenarios and quantitatively evaluate the density and distribution of charged impurities and the effect of dielectric screening. Our results can facilitate the design of multifunctional nano-devices utilizing graphene–oxide hybrid structures.  相似文献   

16.
《Current Applied Physics》2015,15(10):1205-1215
Calculations of renormalized perpendicular conductivity within Kubo formula employing single particle temperature dependent Green's function formalism for bilayer graphene has been attempted. On the basis of numerical analysis, perpendicular conductivity as a function of temperature, interlayer coupling, onsite Coulomb interaction and carrier concentration per site has been analyzed for both AA- and AB-stacked bilayer graphene. It is found that perpendicular conductivity increases with interlayer coupling and also with temperature at low temperatures while at higher temperatures, there is saturation in perpendicular conductivity. Influences of onsite Coulomb interaction and carrier concentration per site on perpendicular conductivity is just opposite to each other while onsite Coulomb energy suppresses the rate of increase of σ/σ⊥0 with temperature, on the other hand increase in carrier density per site enhance this rate significantly. Finally, theoretically obtained results on temperature dependent perpendicular conductivity are viewed in terms of electronic transport data as well as recent theoretical works available in bilayer graphene.  相似文献   

17.
H.M. Dong  W. Xu  R.B. Tan 《Solid State Communications》2010,150(37-38):1770-1773
The temperature relaxation and energy loss of hot Dirac fermions are investigated theoretically in graphene with carrier–optical phonon scattering. The time evolutions of temperature and energy loss for hot Dirac fermions in graphene are calculated self-consistently. It shows that the carrier–optical phonon coupling results in the energy relaxation of hot carriers excited by an electric field, and the relaxation time for temperature is about 0.5–1 ps and the corresponding energy loss is about 10–25 nW per carrier for typically doped graphene samples with a carrier density range of 1–5×1012 cm?2. Moreover, we analyze the dependence of temperature and energy relaxation on initial hot carrier temperature, lattice temperature and carrier density in detail.  相似文献   

18.
《Physics letters. A》2019,383(34):125990
To obtain thermoelectric properties of materials, a constant relaxation time approximation is generally employed. By employing deformation potential theory, a derivation of relaxation time and carrier mobility of BiCuSeO system is proposed combining with density functional theory calculation. And the inter-valley scattering, acoustic phonon scattering and ionized impurity scattering were considered in the model. The calculated values of relaxation time and carrier mobility in BiCuSeO are in good agreement with the results of experiment. The results suggest that acoustic phonon scattering is in dominant and the constant relaxation time approximation is reasonable in lightly doped sample, and the ionized impurity scattering play a significant role in heavily doped system.  相似文献   

19.
郭宝增  宫娜  师建英  王志宇 《物理学报》2006,55(5):2470-2475
用全带多粒子Monte Carlo方法模拟纤锌矿相(Wurtzite)GaN空穴输运特性的结果. 用经验赝势法计算得到能带结构数据. 模拟包含了声学声子散射,光学声子散射,极性光学声子散射,压电散射,电离杂质散射及带间散射等散射机理. 计算得到了空穴沿3个主要对称方向上的空穴平均漂移速度和平均能量与电场强度的关系曲线,室温下漂移速度呈现饱和特性. 在所研究的电场范围内,最大平均漂移速度约为6×106cm s-1,最大空穴平均能量约为0.12eV, 这些值均比电子的相应参数低很多. 还给出了空穴的扩散迁移率与杂质浓度关系的模拟结果. 关键词: 蒙特卡罗 氮化镓 输运特性 能带结构  相似文献   

20.
The van der Waals(vdW)heterostructures of bilayer transition metal dichalcogenide obtained by vertically stacking have drawn increasing attention for their enormous potential applications in semiconductors and insulators.Here,by using the first-principles calculations and the phonon Boltzmann transport equation(BTE),we studied the phonon transport properties of WS2/WSe2 bilayer heterostructures(WS2/WSe2-BHs).The lattice thermal conductivity of the ideal WS2/WSe2-BHs crystals at room temperature(RT)was 62.98 W/mK,which was clearly lower than the average lattice thermal conductivity of WS2 and WSe2 single layers.Another interesting finding is that the optical branches below 4.73 THz and acoustic branches have powerful coupling,mainly dominating the lattice thermal conductivity.Further,we also noticed that the phonon mean free path(MFP)of the WS2/WSe2-BHs(233 nm)was remarkably attenuated by the free-standing monolayer WS2(526 nm)and WSe2(1720 nm),leading to a small significant size effect of the WS2/WSe2-BHs.Our results systematically demonstrate the low optical and acoustic phonon modes-dominated phonon thermal transport in heterostructures and give a few important guidelines for the synthesis of van der Waals heterostructures with excellent phonon transport properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号