首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sun  Dong  Xu  Caiqun  Long  Jianghua  Ge  Teng 《Mikrochimica acta》2015,182(15):2601-2606

This article describes an electrochemical sensor for the dye additive Sunset Yellow (SY). It consists of a carbon paste electrode modified with nanostructured resorcinol-formaldehyde (RF) resin. The RF resin warrants strong signal enhancement and a strongly increased oxidation peak currents of SY at 0.66 V (vs. SCE). The effects of pH value, amount of RF polymer, accumulation potential and time were optimized. The sensor has a linear response to SY in the 0.3 to 125 nM concentration range, and the limit of detection is 0.09 nM after a 2-min accumulation time. The electrode was applied to the analysis of samples of wastewater and drinks, and the results are consistent with those obtained by HPLC.

Nanostructured resorcinol-formaldehyde (RF) resin was prepared and used as a material for electrochemical determination of Sunset Yellow.

  相似文献   

2.
Cui  Haochen  Wu  Jayne  Eda  Shigetoshi  Chen  Jiangang  Chen  Wei  Zheng  Lei 《Mikrochimica acta》2015,182(13):2361-2367

A label-free and single-step method is reported for rapid and highly sensitive detection of bisphenol A (BPA) in aqueous samples. It utilizes an aptamer acting as a probe molecule immobilized on a commercially available array of interdigitated aluminum microelectrodes. BPA was quantified by measuring the interfacial capacitance change rate caused by the specific binding between bisphenol A and the immobilized aptamer. The AC signal also induces an AC electrokinetic effect to generate microfluidic motion for enhanced binding. The capacitive aptasensor achieves a limit of detection as low as 10 fM(2.8 fg ⋅ mL − 1) with a 20 s response time. The method is inexpensive, highly sensitive, rapid and therefore provides a promising technology for on-site detection of BPA in food and water samples.

A. AC electrokinetics effect plays a vital role in BPA detection by introducing microfluidic movement to accelerate the molecular transport to the electrode surface.

B. The ACEK capacitive aptasensor has a limit of detection as low as 10 fM (2.8 fg ⋅ mL − 1) with a 20-s response time.

  相似文献   

3.
Pan  Feng  Mao  Jie  Chen  Qiang  Wang  Pengbo 《Mikrochimica acta》2013,180(15):1471-1477

Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.

  相似文献   

4.
Dewi  Melissa R.  Laufersky  Geoffry  Nann  Thomas 《Mikrochimica acta》2015,182(13):2293-2298

Hetero-dimeric magnetic nanoparticles of the type Au-Fe3O4 have been synthesised from separately prepared, differently shaped (spheres and cubes), monodisperse nanoparticles. This synthesis was achieved by the following steps: (a) Mono-functionalising each type of nanoparticles with aldehyde functional groups through a solid support approach, where nanoparticle decorated silica nanoparticles were fabricated as an intermediate step; (b) Derivatising the functional faces with complementary functionalities (e.g. amines and carboxylic acids); (c) Dimerising the two types of particles via amide bond formation. The resulting hetero-dimers were characterised by high-resolution TEM, Fourier transform IR spectroscopy and other appropriate methods.

Nano-LEGO: Assembling two types of separately prepared nanoparticles into a hetero-dimer is the first step towards complex nano-architectures. This study shows a solid support approach to combine a gold and a magnetite nanocrystal.

  相似文献   

5.
Chen  Lijian  Wang  Nan  Wang  Xindong  Ai  Shiyun 《Mikrochimica acta》2013,180(15):1517-1522

Platinum nanoparticles (Pt-NPs) with sizes in the range from 10 to 30 nm were synthesized using protein-directed one-pot reduction. The model globular protein bovine serum albumin (BSA) was exploited as the template, and the resulting BSA/Pt-NPs were studied by transmission electron microscopy, energy dispersive X-ray spectroscopy, and resonance Rayleigh scattering spectroscopy. The modified nanoparticles display a peroxidase-like activity that was exploited in a rapid method for the colorimetric determination of hydrogen peroxide which can be detected in the 50 μM to 3 mM concentration range. The limit of detection is 7.9 μM, and the lowest concentration that can be visually detected is 200 μM.

Pt-NPs were synthesized using BSA-directed one-pot reduction and BSA/Pt-NPs composite can effectively catalyze the oxidation of TMB producing blue solution in the presence of H2O2.

  相似文献   

6.
Mei  He  Sheng  Qu  Wu  Huimin  Zhang  Xiuhua  Wang  Shengfu  Xia  Qinghua 《Mikrochimica acta》2015,182(15):2395-2401

Alloy nanoparticles of the type PtxFe (where x is 1, 2 or 3) were synthesized by coreduction with sodium borohydride in the presence of carbon acting as a chemical support. The resulting nanocomposites were characterized by scanning electron microscopy and X-ray diffraction. The nanocomposite was placed on a glassy carbon electrode, and electrochemical measurements indicated an excellent catalytic activity for the oxidation of glucose even a near-neutral pH values and at a working voltage as low as 50 mV (vs. SCE). Under optimized conditions, the sensor responds to glucose in the 10.0 μM to 18.9 mM concentration range and with a 3.0 μM detection limit (at an S/N ratio of 3). Interferences by ascorbic acid, uric acid, fructose, acetamidophenol and chloride ions are negligible.

Nonenzymatic sensing of glucose is demonstrated at neutral pH values and low working potential using a glassy carbon electrode modified with platinum-iron alloy nanoparticles on a carbon support.

  相似文献   

7.
Yu  Ningxiang  Peng  Hailong  Xiong  Hua  Wu  Xiaqing  Wang  Xiaoyan  Li  Yanbin  Chen  Lingxin 《Mikrochimica acta》2015,182(13):2139-2146

A fluorescent probe for the sensitive and selective determination of sulfide ions is presented. It is based on the use of graphene quantum dots (GQDs) which emit strong and stable blue fluorescence even at high ionic strength. Copper(II) ions cause aggregation of the GQDs and thereby quench fluorescence. The GQDs-Cu(II) aggregates can be dissociated by adding sulfide ions, and this results in fluorescence turn on. The change of fluorescence intensity is proportional to the concentration of sulfide ions. Under optimal conditions, the increase in fluorescence intensity on addition of sulfide ions is linearly related (r 2 = 0.9943) to the concentration of sulfide ions in the range from 0.20 to 20 μM, and the limit of detection is 0.10 μM (at 3 σ/s). The fluorescent probe is highly selective for sulfide ions over some potentially interfering ions. The method was successfully applied to the determination of sulfide ions in real water samples and gave recoveries between 103.0 and 113.0 %.

Graphene quantum dots (GQDs) emit strong blue fluorescence which, however, is quenched by copper(II) ions due to the formation of GQDs-Cu(II) aggregates. Fluorescence is recovered by sulfide ions due to the dissociation of GQDs-Cu(II) aggregates.

  相似文献   

8.
Zheng  Dongyun  Liu  Xiaojun  Zhu  Shanying  Cao  Huimin  Chen  Yaguang  Hu  Shengshui 《Mikrochimica acta》2015,182(15):2403-2410

We describe an electrochemical sensor for nitric oxide that was obtained by modifying the surface of a nanofiber carbon paste microelectrode with a film composed of hexadecyl trimethylammonium bromide and nafion. The modified microelectrode displays excellent catalytic activity in the electrochemical oxidation of nitric oxide. The mechanism was studied by scanning electron microscopy and cyclic voltammetry. Under optimal conditions, the oxidation peak current at a working voltage of 0.75 V (vs. SCE) is related to the concentration of nitric oxide in the 2 nM to 0.2 mM range, and the detection limit is as low as 2 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitric oxide released from mouse hepatocytes.

NO electrochemical sensor based on CTAB-Nafion/CNFPME was fabricated through a simple method and applied to detect NO released from mouse hepatocytes successfully.

  相似文献   

9.
Chen  Guifang  Shi  Hai  Ban  Fangfang  Zhang  Yuanyuan  Sun  Lizhou 《Mikrochimica acta》2015,182(15):2469-2476

We report on an electrochemical method for the determination of the activity of trypsin. A multi-functional substrate peptide (HHHAKSSATGGC-HS) is designed and immobilized on a gold electrode. The three His residues in the N-terminal are able to recruit thionine-loaded graphene oxide (GO/thionine), a nanocover adopted for signal amplification. Once the peptide is cleaved under enzymatic catalysis by trypsin (cleavage site: Lys residue), the His residues leave the electrode, and the GO/thionine cannot cover the peptide-modified electrode anymore. Thus, the changes of the electrochemical signal of thionine, typically acquired at a voltage of -0.35 V, can be used to determine the activity of trypsin. A detection range of 1 × 10−4 to 1 U, with a detection limit of 3.3 × 10−5 U, can be achieved, which is better than some currently available methods. In addition, the method is highly specific, facile, and has the potential for the detection of trypsin-like proteases.

Graphene oxide was adopted as a nanocover for the development of a sensitive electrochemical method to detect the activity of trypsin.

  相似文献   

10.

We report on the first application of terahertz metamaterials acting as transducers for chemical sensors based on conducting polymers. In our feasibility study aimed at sensing of gaseous hydrochloric and ammonia, a two-dimensional sensor metamaterial consisting of an array of split-ring resonators on the surface of undoped silicon wafer was prepared. The surface of the resonator was coated with a 150-μm layer of polyaniline. Binding of hydrogen chloride to polyaniline leads to distinct changes in the resonance frequency of the metamaterial. Measurements can be performed both in the reflection and transmission mode. A numerical simulation of the response revealed an increase of both the real and the imaginary components of the dielectric function of the polyaniline film. These changes are attributed to the transition from emaraldine base to emeraldine salt. The results demonstrate a new approach for formation of highly sensitive transducers for chemical sensors.

  相似文献   

11.
Zhao  Hengzhi  Dong  Jingjing  Zhou  Fulin  Li  Baoxin 《Mikrochimica acta》2015,182(15):2495-2502

We describe a simple and homogenous fluorimetric method for sensitive determination of DNA. It is based on target-triggered isothermal cycling and a cascade exponential amplification reaction that generates a large amount of a G-quadruplex. This results in strong fluorescence signal when using thioflavin T as a G-quadruplex-specific light-up fluorescent probe. Tedious handling after amplification is widely eliminated by the addition of thioflavin T. No other exogenous reagent is required. This detection platform is inexpensive and rapid, and displays high sensitivity for target DNA, with a detection limit as low as 91 pM.

The addition of target DNA can trigger the isothermal exponential amplification reaction to generate a large amount of G-quadruplex sequence oligonucleotides and then employ thioflavin T (Th T) (a G-quadruplex-specific light-up dye) as signal output for sensitive DNA detection.

  相似文献   

12.
Mu  Juanjuan  Feng  Qingyue  Chen  Xiudan  Li  Jing  Wang  Huili  Li  Mei-Jin 《Mikrochimica acta》2015,182(15):2561-2566

We describe a nanosensor for sensitive and selective detection of cyanide anions. The Ir(III) chlorine bridge complex [Ir(C^N)2-m-Cl]2 (Irpq, where pq is C^N = 2-phenyl quinoline) was doped into silica nanoparticles (SiNPs) with a typical size of about 30 nm. The intensity of the yellow emission of the doped SiNPs (under 410 nm exCitation) was strongly enhanced on addition of cyanide ions due to the replacement of chloride by cyanide. The method can detect cyanide ions in the 12.5 to 113 μM concentration range, and the limit of detection is 1.66 μM (at an S/N ratio of 3). The method is simple, sensitive and fast, and this makes it a candidate probe for the fast optical determination of cyanide.

The nanosensor is exploiting the cyanide-induced enhancement of the fluorescence of silica nanoparticles doped with an Ir(III) complex which is the result of the replacement of chloride by cyanide.

  相似文献   

13.
Wang  Yong  Qu  Jianhang  Li  Shufang  Dong  Ying  Qu  Jianying 《Mikrochimica acta》2015,182(13):2277-2283

We describe an electrochemical sensor for simultaneous determination of hydroquinone (HQ) and catechol (CC). A glassy carbon electrode (GCE) was modified with gold nanoparticles, L-cysteine, and ZnS/NiS@ZnS quantum dots using a layer-by-layer technique. The materials were characterized by X-ray diffractometry, field emission scanning electron microscopy, and electrochemical impedance and Fourier transform infrared spectroscopy. Cyclic voltammetry and differential pulse voltammetry revealed this modified GCE to represent a highly sensitive sensor for the simultaneous determination of HQ and CC. The anodic peak current for HQ at a working voltage of 80 mV (vs. Ag/AgCl) is related to its concentration in the 0.1 to 300 μM range (even in the presence of 0.1 mM of CC). The anodic peak current for CC at a working voltage of 184 mV is related to its concentration in the 0.5 to 400 μM range (even in the presence of 0.1 mM of HQ). The detection limits (at an S/N ratio of 3) are 24 and 71 nM for HQ and CC, respectively. The modified GCE was successfully applied to the determination of HQ and CC in aqueous solutions and gave satisfactory results.

A glassy carbon electrode was modified with gold nanoparticles, ZnS/NiS@ZnS quantum dots and L-cysteine and used for simultaneous determination of hydroquinone and catechol.

  相似文献   

14.
He  Yi  Zhang  Xianhui  Yu  Haili 《Mikrochimica acta》2015,182(11):2037-2043

We demonstrate a selective and sensitive method for determination of creatinine using citrate-stabilized gold nanoparticles (AuNPs) as a colorimetric probe. It is based on a direct cross-linking reaction that occurs between creatinine and AuNPs that causes aggregation of AuNPs and results in a color change from wine red to blue. The absorption peak is shifted from 520 to 670 nm. Under the optimized conditions, the shift in the absorption peak is related the logarithm of the creatinine concentration in the 0.1 to 20 mM range, and the instrumental detection limit (LOD) is 80 μM. This LOD is about one order of magnitude better than that that of the Jaffé method (720 μM). The assay displays good selectivity over interfering substances including various inorganic ions, organic small compounds, proteins, and biothiols. It was successfully employed to the determination of creatinine in spiked human urine.

The colorimetric assay for creatinine uses citrate-stabilized gold nanoparticles (AuNPs) and a direct cross-linking reaction that occurs between creatinine and AuNPs that causes aggregation of AuNPs and results in a color change from wine red to blue.

  相似文献   

15.

This work describes a novel polyaniline-magnetite nanocomposite and its application to the preconcentration of Cr(VI) anions. The material was obtained by oxidative polymerization of aniline in the presence of magnetite nanoparticles. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Extraction time, amount of magnetic sorbent and pH value were selected as the main factors affecting sorption. The sorption capacity of the sorbent for Cr(VI) is 54 mg g−1. The type, volume and concentration of the eluents, and the elution time were selected as main factors in the optimization study of the elution step. Following sorption and elution, the Cr(VI) ions were reacted with diphenylcarbazide, and the resulting dye was quantified by HPLC with optical detection at 546 nm. The limit of detection is 0.1 μg L−1, and all the relative standard deviations are <6.3 %. The nanocomposite was successfully applied to the rapid extraction and determination of trace quantities of Cr(VI) ions in spiked water samples.

A schematic procedure of magnetic solid phase extraction

  相似文献   

16.

Acetylcholinesterase (AChE) from Electrophorus electricus was immobilized on the surface of amino-modified magnetic beads (AChE-MB), and its activity evaluated by the quantification of acetylcholine hydrolysis. A reference mixture composed of AChE binders (galanthamine and a probe coumarin, K i = 0.031 ± 0.010 μM) and non-binders (ketamine and propranolol) was used to probe the fishing assay. The performance of the bioconjugation assay was demonstrated with a library of 12 reference coumarins from which two ligands were directly identified by LC-MS/MS in a single assay, demonstrating the usefulness of this approach.

A bioconjugate-screening assay with AChE-modified magnetic beads was developed to direct identification of AChE binders, in mixtures, by LC-MS/MS. A reference mixture of twelve coumarins was used and, the two ligands were identified.

  相似文献   

17.
Bhaisare  Mukesh Lavkush  Talib  Abou  Khan  M. Shahnawaz  Pandey  Sunil  Wu  Hui-Fen 《Mikrochimica acta》2015,182(13):2173-2181

A jelly-like form of carbon dots (C-dots) was prepared by microwave-assisted synthesis from citric acid in the presence of tetraoctylammonium bromide. The effect of the concentration of tetraoctylammonium bromide was examined. The synthesized carbon dots were characterized by UV–vis, XRD, FTIR, fluorescence and HR-TEM. Fluorescence extends from 350 to 600 nm, and the corresponding excitation wavelengths range from 300 to 460 nm. Quantum yields are at around 0.11. A cytotoxicity study showed carbon dots to be cell permeable and biocompatible which renders them appropriate for imaging applications. The dots were used to image HeLa cell lines via the blue fluorescence of the dots.

C-dots were synthesized from citric acid by microwave heating in presence of varying concentrations of tetraoctylammonium bromide (TOAB) as a micellar template. The excellent optical properties of the nanoparticles make them well suitable for bio-imaging of HeLa cells.

  相似文献   

18.
Zare  Fahimeh  Ghaedi  Mehrorang  Daneshfar  Ali 《Mikrochimica acta》2015,182(11):1893-1902

The solid phase extraction (SPE) is described for preconcentration of the antidepressant drugs amitriptyline and nortriptyline prior to their determination by HPLC with UV detection. It is based on the use of water-dispersible core-shell nanoparticles (NPs) of the Fe3O4@ZrO2@N-cetylpyridinium type. The positively charged surfactant N-cetylpyridinium forms mixed aggregates with the drugs on the surface of the core-shell and thereby improves the adsorption of amitriptyline and nortriptyline through hydrophobic and/or ionic interactions. Their extraction depends on the type and amount of surfactant, sample pH, extraction time, desorption conditions, sample volume and amount of NPs that were optimized by application of experimental design. The enrichment factors are 220 and 250, respectively, for amitriptyline and nortriptyline, and the detection limits are 0.04 and 0.08 ng·mL‾1. This protocol enables accurate and precise quantification of the two drugs in complex and low content samples. It was applied to the determination of the two drugs in plasma samples with relative recoveries in the range from 89 to 105 % and RSDs less than 4 %.

  相似文献   

19.
Yang  Tao  Chen  Huaiyin  Yang  Ruirui  Jiang  Yuhang  Li  Weihua  Jiao  Kui 《Mikrochimica acta》2015,182(15):2623-2628

Thin-layered molybdenum disulfide (MoS2) was intercalated, via ultrasonic exfoliation, into self-doped polyaniline (SPAN). This material, when placed on a glassy carbon electrode (GCE), exhibits excellent electrical conductivity and synergistic catalytic activity with respect to the detection of bisphenol A (BPA). The electrochemical response of the modified GCE to BPA was investigated by cyclic voltammetry and differential pulse voltammetry. Under optimal conditions, the oxidation peak current (measured best at 446 mV vs. SCE) is related to the concentration of BPA in the range from 1.0 nM to 1.0 μM, and the detection limit is 0.6 nM.

Thin-layered molybdenum disulfide (MoS2) was intercalated into self-doped polyaniline (SPAN) via ultrasonic exfoliation. The special conjugated structure and functional groups of MoS2-SPAN composite help to adsorb BPA easily. MoS2-SPAN has a synergistic effect for catalyzing the oxidation of BPA. The BPA electrochemical sensor based on MoS2-SPAN has a high sensitivity and low detection limit.

  相似文献   

20.
Asiabi  Hamid  Yamini  Yadollah  Rezaei  Fatemeh  Seidi  Shahram 《Mikrochimica acta》2015,182(11):1941-1948

The authors describe an efficient method for microextraction and preconcentration of trace quantities of cationic nitrogen compounds, specifically of anilines. It relies on a combination of electrochemically controlled solid-phase microextraction and on-line in-tube solid-phase microextraction (SPME) using polypyrrole-coated capillaries. Nanostructured polypyrrole was electrically deposited on the inner surface of a stainless steel tube and used as the extraction phase. It also acts as a polypyrrole electrode that was used as a cation exchanger, and a platinum electrode that was used as the anode. The solution to be extracted is passed over the inner surface of the polypyrrole electrode, upon which cations are extracted by applying a negative potential under flow conditions. This method represents an ideal technique for SPME of protonated anilines because it is fast, easily automated, solvent-free, and inexpensive. Under optimal conditions, the limits of detection are in the 0.10–0.30 μg L‾1 range. The method works in the 0.10 to 300 μg L‾1 concentration range. The inter- and intra-assay precisions (RSD%; for n = 3) range from 5.1 to 7.5 % and from 4.7 to 6.0 % at the concentration levels of 2, 10 and 20 μg L‾1, respectively. The EC-in-tube SPME method was successfully applied to the analysis of methyl-, 4-chloro-, 3-chloro and 3,4-dichloroanilines in (spiked) water samples.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号