共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water. Figure
Functional magnetic Fe3O4@SiO2 core shell nanoparticles were utilized for solid phase extraction of Hg(II) from aqueous solutions, and the extracted Hg(II) was determined by a rhodamine-based fluorescent probe RP with satisfying results. 相似文献
2.
3.
We report on a combination of magnetic solid-phase extraction and spectrophotometric determination of bromate. Cetyltrimethylammonium ion was adsorbed on the surface of phenyl-functionalized silica-coated Fe3O4 nanoparticles (Ph-SiO2@Fe3O4), and these materials served as the sorbent. The effects of surfactant and amount of sorbent, the composition of the desorption solution, the extraction time and temperature were optimized. Under optimized conditions, an enrichment factor of 12 was achieved, and the relative standard deviation is 2.9 % (for n?=?5). The calibration plot covers the 1–50 ng mL?1 range with reasonable linearity (r 2?>?0.998); and the limit of detection is 0.5 ng mL?1. The method is not interfered by ionic compounds commonly found in environmental water samples. It was successfully applied to the determination of bromate in spiked water samples. Figure
Extraction of bromate ions using surfactant-coated phenyl functionalized Fe3O4 magnetic nanoparticles followed by spectrophotometric detection. 相似文献
4.
A naked-eye turn-on fluorescent Fe3+ probe (RQ6) was developed by linking a new conjugated quinoline fluorescent group to the rhodamine platform. The probe can detect Fe3+ with high selectivity over other metal ions. Bioimaging studies indicated that RQ6 was cell permeable and suitable for detecting Fe3+ in the living cells by confocal microscopy. 相似文献
5.
6.
Chen-I Wang Chih-Ching Huang Yang-Wei Lin Wen-Tsen Chen Huan-Tsung Chang 《Analytica chimica acta》2012
In this study, we developed a fluorescence assay for the highly sensitive and selective detection of Hg2+ and Pb2+ ions using a gold nanoparticle (Au NP)-based probe. The Hg–Au and Pb–Au alloys that formed on the Au NP surfaces allowed the Au NPs to exhibit peroxidase-mimicking catalytic activity in the H2O2-mediated oxidation of Amplex UltraRed (AUR). The fluorescence of the AUR oxidation product increased upon increasing the concentration of either Hg2+ or Pb2+ ions. By controlling the pH values of 5 mM tris–acetate buffers at 7.0 and 9.0, this H2O2–AUR–Au NP probe detected Hg2+ and Pb2+ ions, respectively, both with limits of detection (signal-to-noise ratio: 3) of 4.0 nM. The fluorescence intensity of the AUR oxidation product was proportional to the concentrations of Hg2+ and Pb2+ ions over ranges 0.05–1 μM (R2 = 0.993) and 0.05–5 μM (R2 = 0.996), respectively. The H2O2–AUR–Au NP probe was highly selective for Hg2+ (>100-fold) and Pb2+ (>300-fold) ions in the presence of other tested metal ions. We validated the practicality of this simple, selective, and sensitive H2O2–AUR–Au NP probe through determination of the concentrations of Hg2+ and Pb2+ ions in a lake water sample and of Pb2+ ions in a blood sample. To the best of our knowledge, this system is the first example of Au NPs being used as enzyme-mimics for the fluorescence detection of Hg2+ and Pb2+ ions. 相似文献
7.
This study presents a method for the selective determination of Hg(II) using electromembrane extraction (EME), followed by square wave anodic stripping voltammetry (SWASV), using a gold nanoparticle-modified glassy carbon electrode, (AuNP/GCE). By applying an electrical potential of typically 60 V for 12 min through a thin supported liquid membrane (1-octanol), Hg(II) ions are extracted from a donor phase (i.e., the sample solution) to an acidic acceptor solution (15 μL) placed in the lumen of a hollow fiber. The influences of experimental parameters during EME were optimized using face-centered central composite design. The calibration plot, established at a working voltage of 0.55 V (vs. Ag/AgCl), extends from 0.2 to 10 μg.L?1 of Hg(II). The limit of detection, at a signal to noise ratio of 3, is 0.01 μg.L?1 and the relative standard deviations (for 5 replicate determinations at 3 concentration levels) are between 7.5 and 8.7 %. The method was successfully applied to the determination of Hg(II) in spiked real water samples to give recoveries ranging from 89 to 97 %. The results were validated by cold vapor atomic absorption spectroscopy. 相似文献
8.
We report on the synthesis and evaluation of aminated-CoFe2O4/SiO2 nanoparticles that can serve as a selective solid-phase sorbent for the extraction of cadmium ion. The nanoparticles consist of a magnetic CoFe2O4 core and an amino-modified silica shell. They can efficiently extract cadmium(II) ion and then can be isolated from the sample solution due to the magnetic nature of the core. The effects of the experimental conditions on the extraction process were optimized. Cadmium was then quantified by hydride generation atomic fluorescence spectrometry. The resulting calibration curve is linear in the concentration range of 0.01–10 μg?L?1, the instrumental detection limits (3σ) is 3.15 ng?L?1 and the relative standard deviation is 4.9 % at the 1.0 μg?L?1 level (for n?=?11). The enrichment factor is 50 (for 50 mL samples), and the adsorbent can be used for at least 45 cycles of preconcentration and elution. The method was applied to the determination of cadmium in environmental water samples, and successfully validated by analyzing two certified reference materials. Figure
Magnetic solid-phase extraction coupled with hydride generation atomic fluorescence spectrometry for the determination of cadmium is described. 相似文献
9.
Baoxia Liu Yankai Huang Xu Zhu Yuanqiang Hao Yujie Ding Wei Wei Qi Wang Peng Qu Maotian Xu 《Analytica chimica acta》2016
Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg2+ detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb3+ from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg2+ into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg2+. As a kind of Hg2+ nanosensor, the probe exhibited excellent selectivity for Hg2+ and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg2+ in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. 相似文献
10.
The authors describe a silicon nanoparticle-based fluorometric method for sensitive and selective detection of Cu2+. It is based on the catalytic action of Cu2+ on the oxidation of cysteine (Cys) by oxygen to form cystine and the by-product H2O2. The generated H2O2 is catalytically decomposed by Cu2+ to generate hydroxyl radicals which oxidize and destroy the surface of SiNPs. As a result, the blue fluorescence of the SiNPs is quenched. The method has excellent selectivity due to the dual catalytic effects of Cu2+, which is much better than most previously reported nanomaterial-based assays for Cu2+. Under the optimal conditions, the method has low detection limit (29 nM) and a linear response in a concentration range from 0.05 μM to 15 μM. The method has been successfully applied to the determination of Cu2+ in spiked real water samples, and the results agreed well with those obtained by the Chinese National Standard method (GB/T 7475-1987; AAS). 相似文献
11.
In the present study, application of Fe3O4 magnetic nanoparticles (MNPs) coated with diethyldithiocarbamate as a solid-phase sorbent for extraction of trace amounts of cadmium (Cd2+) and nickel (Ni2+) ions by the aid of ultrasound was investigated. The analytes were determined by inductively coupled plasma-optical emission spectroscopy. Fe3O4 MNPs were prepared by solvothermal method and characterized with dynamic light scattering, scanning electron microscope and X-ray diffraction. Response surface methodology was used for optimization of the extraction process and modeling the data. The optimal conditions obtained were as follows: chelating agent, 1.2 g L?1; pH, 6.13; sonication time, 13 min and Fe3O4 MNPs, 10.3 mg. The calibration curves were linear over the concentration range of 1–1,000 μg L?1 for Cd2+ and 2.5–1,000 for Ni2+ with the determination coefficients (R 2) of 0.9997 and 0.9995, respectively. The limits of detection were 0.27 μg L?1 for Cd2+ and 0.76 μg L?1 for Ni2+. The relative standard deviations (n = 7, C = 200 μg L?1) for determination of Cd2+ and Ni2+ were 2.0 and 2.7 %, respectively. The relative recoveries of the analytes from tap, river and lagoon waters and rice samples at the spiking level of 10 μg L?1 were obtained in the range of 95–105 %. 相似文献
12.
Isabel López 《Talanta》2010,82(2):594-599
A fast method for mercury extraction from biological samples based on the use of HCl leaching plus different enzymatic hydrolysis (with and without mercury complexing agents), and the use of focussed ultrasounds (2-mm microtip) is here proposed. Total mercury content in several biological samples was determined by FI-ICP-MS using a carrier solution consisting of 0.1% (v/v) HCl, 0.1% (v/v) 2-mercaptoethanol, to avoid memory effect, and 0.15% (w/v) KCl. For mercury speciation a RP18 chromatographic column coupled to ICP-MS was used. A mobile phase consisting of 0.1% (v/v) formic acid, 0.1% (v/v) HFBA, 2% (v/v) methanol, and 0.02% (w/v) mM l-cysteine at pH 2.1 was used for chromatographic separation of the mercury species in the sample extracts. Extraction procedures were validated by using 50 mg of tuna fish tissue CRM-463 (2.85 ± 0.16 mg kg−1 for methylmercury). The recoveries obtained were 99 ± 3% and 93 ± 1% after acid leaching (HCl 7 M) and enzymatic extraction (15 mg protease type XIV in 2.5% (v/v) 2-mercaptoethanol), respectively. The optimal sonication conditions (5 min of exposure time and 40% of ultrasound amplitude) were applied to 5 mg of CRM-463 (88 ± 5%), 5 mg of mussel tissue (81 ± 11%) and to 2 mg of zebra fish embryos (90 ± 10%) obtaining good recoveries in all cases. Methylmecury was found to be the most abundant Hg specie in all samples. The developed method is simple and rapid (5 min sample treatment); it is suitable for very small samples and does not alter the original form of the mercury species. Thus, it is of special interest in those cases in which validation of the results may often be hampered by lack of sample availability. 相似文献
13.
A new method for solid-phase extraction and preconcentration of trace mercury(II) from aqueous solution was developed using 1,5-diphenylcarbazide doped magnetic Fe3O4 nanoparticles as extractant. The surface treatment did not result in the phase change of Fe3O4. Various factors which influenced the recovery of the analyte were investigated using model solutions and batch equilibrium technique. The maximum adsorption occurred at pH?>?6, and equilibrium was achieved within 5 min. Without filtration or centrifugation, these mercury loaded nanoparticles could be separated easily from the aqueous solution by simply applying an external magnetic field. At optimal conditions, the maximum adsorption capacity was 220 μmol g?1. The mercury ions can be eluted from the composite magnetic particles using 0.5 mol L?1 HNO3 as a desorption reagent. The detection limit of the method (3σ) was 0.16 μg L?1 for cold vapor atomic absorption spectrometry, and the relative standard deviation was 2.2%. The method was validated by the analysis of a certified reference material with the results being in agreement with those quoted by manufactures. The method was applied to the preconcentration and determination of trace inorganic mercury(II) in natural water and plant samples with satisfactory results. 相似文献
14.
A highly selective, sensitive and rapid method for the determination of trace amounts of inorganic mercury based on the reaction of Hg (II) with 6-mercaptopurine and the solid phase extraction of the complex on C18 membrane disks was developed. The 6-mercaptopurine selectively reacts with Hg (II) to form a complex in the pH range of 5-8. This complex was preconcentrated by solid phase extraction with C18 disks. An enrichment factor of 100 was achieved. The molar absorptivity of the complex is 0.26 x 10(-6) L. mol(-1) cm(-1) measured at 315 nm. The Beer's law is obeyed in the concentration range of 0.002-0.048 microg mL(-1). The relative standard deviation for eleven-replicated measurement of 0.04 microg mL(-1) is 1.5 %. The detection limit is 0.001 microg mL(-1) in the water samples. The advantage of the method is that the determination of Hg (II) is free from interference of almost all the cations and anions found in environment and wastewater samples. The determination of Hg (II) in water samples of different origins and marine sediment were carried out by the present method and cold vapor atomic absorption spectrometry (CVAAS). Also the method's accuracy was investigated by using SRM 2709. The obtained results by the present procedure were in good agreement with those of the CVAAS and certified value, so that the applicability of the proposed method was confirmed for the real samples. 相似文献
15.
Highly sensitive SERS probe for mercury(II) using cyclodextrin-protected silver nanoparticles functionalized with methimazole 总被引:1,自引:0,他引:1
Pinyi Ma Fanghui Liang Qingqing Yang Di Wang Ying Sun Xinghua Wang Dejiang Gao Daqian Song 《Mikrochimica acta》2014,181(9-10):975-981
We have developed a surface-enhanced Raman scattering (SERS) probe for the determination of mercury(II) using methimazole-functionalized and cyclodextrin-coated silver nanoparticles (AgNPs). These AgNPs in pH 10 solution containing sodium chloride exhibit strong SERS at 502 cm?1. Its intensity strongly decreases in the presence of Hg(II). This effect serves as the basis for a new method for the rapid, fast and selective determination of trace Hg(II). The analytical range is from 0.50 μg L?1 to 150 μg L?1, and the limit of detection is 0.10 μg L?1. The influence of 11 metal ions commonly encountered in environmental water samples was found to be quite small. The method was applied to the determination of Hg(II) in spiked water samples and gave recoveries ranging from 98.5 to 105.2 % and with relative standard deviations of <3.5 % (n?=?5). The total analysis time is <10 min for a single sample. Figure
A high-sensitive SERS probe for the determination of Hg2+ using methimazole-functionalized cyclodextrin-protected AgNPs was designed. The limit of detection is 0.10 μg L?1. 相似文献
16.
We have modified silica-coated Fe3O4 nanoparticles with 2,6-diaminopyridine and used these for selective magnetic solid-phase extraction of trace amounts of metal ions. The nanoparticles were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. Quantitative extraction of trace amounts of Cu(II) and Zn(II) from mixed-ion solutions was accomplished at an optimal pH value of 6 within less than 10?min. The metal ions were eluted from the sorbent with hydrochloric acid. Common electrolytes and chemically related metal ions do not interfere. The relative standard deviations of the method are <4?%. It was successfully applied to the separation and preconcentration of trace metal ions from the certified reference materials GBW 08301 (river sediment) and GBW 08607 (water solution), in natural water, and in samples of vegetable with satisfying results. 相似文献
17.
Baoyu Liu Fang Zeng Shuizhu Wu Jiasheng Wang Fangcheng Tang 《Mikrochimica acta》2013,180(9-10):845-853
We report on a fluorescence resonance energy transfer (FRET)-based ratiometric sensor for the detection of Hg(II) ion. First, silica nanoparticles were labeled with a hydrophobic fluorescent nitrobenzoxadiazolyl dye which acts as a FRET donor. A spirolactam rhodamine was then covalently linked to the surface of the silica particles. Exposure of the nanoparticles to Hg(II) in water induced a ring-opening reaction of the spirolactam rhodamine moieties, leading to the formation of a fluorescent derivative that can serve as the FRET acceptor. Ratiometric sensing of Hg(II) was accomplished by ratioing the fluorescence intensities at 520 nm and 578 nm. The average decay time for the donor decreases from 9.09 ns to 7.37 ns upon addition of Hg(II), which proves the occurrence of a FRET process. The detection limit of the assay is 100 nM (ca. 20 ppb). The sensor also exhibits a large Stokes shift (>150 nm) which can eliminate backscattering effects of excitation light. Figure
A FRET-based ratiometric sensing system for Hg in water is built within the core/shell silica nanoparticle. This architecture ensures the control over the location of donor and acceptor, affording the system preferable for ratiometric sensing. 相似文献
18.
Mahmoud Reza Sohrabi Zahra Matbouie Ali Akbar Asgharinezhad Ali Dehghani 《Mikrochimica acta》2013,180(7-8):589-597
We describe a novel magnetic metal-organic framework (MOF) for the preconcentration of Cd(II) and Pb(II) ions. The MOF was prepared from the Fe3O4-pyridine conjugate and the copper(II) complex of trimesic acid. The MOF was characterized by IR spectroscopy, elemental analysis, SEM and XRD. A Box-Behnken design through response surface methodology and experimental design was used to identify the optimal parameters for preconcentration. Extraction time, amount of magnetic MOF and pH value were found to be critical factors for uptake, while type, volume, concentration of eluent, and elution time are critical in the elution step. The ions were then determined by FAAS. The limits of detection are 0.2 and 1.1 μg?L?1 for Cd(II), and Pb(II) ions, respectively, relative standard deviations are <4.5% (for five replicates at 50 μg?L?1 of Cd(II) and Pb(II) ions), and the enrichment capacity of the MOF is at around 190 mg?g?1 for both ions which is higher than the conventional Fe3O4-pyridine material. The magnetic MOF was successfully applied to the rapid extraction of trace quantities of Cd(II) and Pb(II) ions in fish, sediment, and water samples. Figure
Schematic illustration of synthesized magnetic MOF-pyridine nanocomposite 相似文献
19.
20.
Microchimica Acta - The authors describe a selective and sensitive method for the colorimetric determination of Cd(II) by using silver nanoparticles capped with chalcone carboxylic acid (CCA) as an... 相似文献