首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, SiO2 nanoparticles (NPs) were modified with bovine serum albumin (BSA) under ultrasound irradiations as a green and fast route to achieve their good dispersion. Subsequently, different weight percentages of the modified NPs (3, 6, and 9 wt%) were incorporated in poly(vinyl chloride) (PVC) as the matrix. Thermogravimetric analysis of the SiO2-BSA NPs indicated that 12 wt% of the modifier was loaded on the surface of SiO2 NPs. Encapsulation of the SiO2-BSA resulted in a meaningful improvement in the optical, mechanical and thermal characteristics of the prepared PVC nanocomposites (NCs). X-ray diffraction (XRD) patterns for the PVC/SiO2-BSA NCs showed a crystalline behavior for the NC with 6 wt% of the SiO2-BSA originated from the phosphate buffer on the NPs. Water contact angle of the PVC/SiO2-BSA NCs showed that the hydrophilicity enhanced with increasing of the NPs contents.  相似文献   

2.
In this project, physicochemical properties of poly(vinyl chloride) (PVC) reinforced by ZnO nanoparticles (NPs) were studied. Firstly, ZnO NPs were modified with bovine serum albumin (BSA) as an organo-modifier and biocompatible substance through ultrasound irradiation as environmental friendly, low cost and rapid means. Nanocomposite (NC) films were prepared by loadings of various ratios of ZnO/BSA NPs (3, 6 and 9 wt%) inside the PVC. Structural morphology and physical properties of the ZnO-BSA NPs and NC films were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), transmission electron microscopy and field emission scanning electron microscopy. According to the obtained information from the TGA, an increase in the thermal stability can be clearly observed. Also the results of contact angle analysis indicated with increasing percent of ZnO/BSA NPs into PVC the hydrophilic behaviors of NCs were increased.  相似文献   

3.
In this research, solvent based polyamide – imide (PAI)/clay nanocomposites were prepared successfully using the solution dispersion technique. With the assistance of the ultrasonic wave, the effect of the ultrasonic wave time on the microstructure of 3 wt% PAI/C20A nanocomposite (NC) was investigated. Then, the best ultrasonic parameters were selected and the effects of the concentration of Cloisite 20A (C20A) (1, 3 and 5 wt% C20A) on the microstructure and mechanical properties (adhesion, hardness, flexibility, wear and impact) of NCs were investigated. The PAI, C20A and nanocomposites (NC)s were characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and Wide-angle X-ray diffraction (WAXD). The results showed that the sample with 1 and 3 wt% C20A had better mechanical properties, as compared to the pure PAI and the 5 wt% NC.  相似文献   

4.
ZnO/ZrO2 nanocomposites with different ZnO: ZrO2 molar ratios (2:1, 1:1, and 1:2)were prepared by sol gel approach under ultrasonic irradiation. For preparation of the nano-composites, the ZnO gel was directly incorporated into the ZrO2 gel at different molar ratios. The reaction mixture was stirred continuously for two days and then it was ultrasonoicated for 30 min. The filtrated composite gel was washed, and then calcinated at 300 °C in furnace for 3 h. X-ray powder diffraction patterns exhibited well-formed crystal structures and pure crystalline phases in the synthesized nanoparticles (NPs). The FT-IR analyses indicated that the positions of peaks related to Zn-O and Zr-O absorption bands did not change in nano-composites. In addition, FESEM images indicated uniform spherical morphology of the NPs. The highest photo-degradation performance of Congo red (as a model water pollutant) was obtained by 1:2molar ratio of ZrO2: ZnO in the nano-composite. The particle size and band gap were considered as important factors on nano-catalysts performance. Furthermore, the effects of ultrasonic irradiation, pH, and the concentration of pollutant in solution were investigated on photocatalytic performance of optimum nanocomposite.  相似文献   

5.
CO2-enhanced oxidative dehydrogenation of ethane was investigated over sonochemically synthesized Cr/clinoptilolite-ZrO2 nanocatalyst with the aim of assessing the effect of composite support and ultrasonic irradiation on the nanocatalyst reactivity and stability. To this aim, ZrO2 promoted clinoptilolite supports varying in zirconia content (0, 25, 50 wt%) were synthesized by hydrothermally precipitation method and impregnated with chromium nitrate under ultrasound irradiation. The samples were characterized by XRD, FESEM, EDX, TEM, ICP, BET, FTIR, TPR-H2 and TPD-NH3 techniques. The characterization results indicated that ultrasound irradiation could not only reduce the formation of Cr2O3 and decrease submicron particle size of chromium oxide to nanometer scale, but also promote the distribution of metallic particles and strengthen the chromium-support interaction. As a result, utilizing ultrasound irradiation in the synthesis of Cr/Clinoptilolite helped to maintain a high and stable catalytic activity. These features were more prominent in the presence of zirconia. It was found that the metal oxide nanoparticles with about 4–8 nm are dispersed uniformly on the surface of composite support containing 25 wt% ZrO2 (CLT-Z25). Moreover, the addition of ZrO2 resulted in the formation of new strong acid sites and a significant modification in the reducibility of chromium species, which alongside homogenous and small Cr nanoparticles account for the superior catalytic performance of ZrO2 containing samples. However, excessive loading of ZrO2 (50 wt%) severely covered the surface of clinoptilolite, afforded the aggregations of metallic particles and thereupon, weakened the contact between clinoptilolite and ZrO2, which together with more acid strength seriously resulted in the deactivation of catalyst. In spite of superior initial activity of ZrO2-rich sample among the catalysts tested, ultrasonic synthesized Cr/CLT-Z25 nanocatalyst showed the best catalytic performance after 5 h-catalytic reaction.  相似文献   

6.
The present paper describes the result of investigations into preparation of novel nanocomposites (NCs) based on poly(N-vinyl-2-pyrrolidone) (PVP) as a biocompatible polymer and modified copper (II) oxide nanoparticles (NPs) as a nano-filler. To achieve optimum NCs properties, different ratios of modified copper (II) oxide NPs (3, 5, and 7 wt%) were used to fabricate PVP NCs and also the ultrasonic irradiation was utilized to perform these processes as a fast and effective method. Subsequently, the structure of the obtained nanohybrids was characterized by various techniques. The suitable incorporation between PVP matrix and modified CuO NPs can be seen from the FT-IR spectra. The obtained NCs indicated an efficient thermal improvement in comparison to the pristine polymer. Also, the uniform dispersion of modified CuO NPs in the PVP matrix was detected by FE-SEM and EDX. According to UV absorption spectra, it is clear that these NCs can be used in UV protecting applications.  相似文献   

7.
Highly ordered freestanding tubular zirconia (ZrO2) membrane was prepared via an electrochemical anodization of zirconium (Zr) substrate in non-aqueous electrolytes (mixture of formamide and glycerol (weight ratio = 1:1) containing 1 wt% NH4F and 3 wt% H2O). Two methods were used to fabricate the two-end opened ZrO2 membranes, one is a potential shock method and another is a reducing potential method. The two-end opened ZrO2 membrane was produced through the detachment of the existing self-organized ZrO2 tubular layer from Zr substrate or sub tubular layer. The microstructures and morphologies of the samples were studied by scanning electron microscopy and the growth mechanisms of the two-end opened ZrO2 nanotube arrays were investigated.  相似文献   

8.
In this work, Ag2CO3 nanoparticles (NPs) (as a n-type semiconductor) incorporated in mordenite zeolite (MOR) by a facile precipitation method. Silver halides, AgCl (as a p-type semiconductor) and AgBr (as a n-type semiconductor), with different weight percentage (20%, 40% and 50%) were coupled into Ag2CO3-MOR nanocomposite (NC) and producing a series of novel AgCl/Ag2CO3 (p-n heterojunction)-MOR and AgBr/Ag2CO3 (n-n heterojunction)-MOR NCs. The effects of silver halides on the Ag2CO3–MOR catalyst for the photocatalytic degradation of methyl blue (MB) under visible light irradiation have been investigated. The structure, composition and optical properties of NCs were investigated by UV–Visible diffuse reflectance spectroscopy (UV–Vis DRS), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). The prepared AgX/Ag2CO3-MOR NCs with the optimal content of AgX (50 wt%) indicated higher photocatalytic activity than that of the Ag2CO3-MOR and Ag2CO3. The cycle experiments on the heterojuctions NCs indicated that photocatalytic stability of AgBr/Ag2CO3-MOR NC was more than AgCl/Ag2CO3-MOR NC in all cycles. On the basis of the experimental results, a possible mechanism for the enhanced photocatalytic activity and photoinduced stability of silver compounds was proposed.  相似文献   

9.
Zirconia (ZrO2) nanostructures of various sizes have been synthesized using sol–gel method followed by calcination of the samples from 500 to 700 °C. The calcined ZrO2 powder samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infra-red spectroscopy (FT-IR), UV–visible spectroscopy (UV–vis.), Raman spectroscopy (RS) and thermogravimetric analysis (TGA). The phase transformation from tetragonal (t) to monoclinic (m) was observed. The average diameter of the ZrO2 nanostructures calcined at 500, 600 and 700 °C was calculated to be 8, 17 and 10 nm, respectively. The ZrO2 sample calcined at 500 °C with tetragonal phase shows a direct optical band gap of 5.1 eV. The value of optical band gap is decreased to 4.3 eV for the ZrO2 calcined at 600 °C, which contains both tetragonal (73%) and monoclinic (27%) phases. On further calcination at 700 °C, where the ZrO2 nanostructures have 36% tetragonal and 64% monoclinic phases, the optical band gap is calculated to be 4.8 eV. The enhancement in optical band gap for ZrO2 calcined at 700 °C may be due to the rod like shape of ZrO2 nanostructures. The tetragonal to monoclinic phase transformation was also confirmed by analyzing Raman spectroscopic data. The TG analysis revealed that the ZrO2 nanostructure with dominance of monoclinic phase is found to be more stable over the tetragonal phase. In order to confirm the phase stability of the two phases of ZrO2, single point energy is calculated corresponding to its monoclinic and tetragonal structures using density functional theory (DFT) calculations. The results obtained by theoretical calculations are in good agreement with the experimental findings.  相似文献   

10.
Magnetic–fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV–vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect – related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.  相似文献   

11.
The present study demonstrated the enhanced hydroxyl (OH) radical generation by combined use of dual-frequency (0.5 MHz and 1 MHz) ultrasound (US) and titanium dioxide (TiO2) nanoparticles (NPs) as sonocatalyst. The OH radical generation became the maximum, when 0.5 MHz US was irradiated at an intensity of 0.8 W/cm2 and 1 MHz US was irradiated at intensities at 0.4 W/cm2 in the presence of TiO2 NPs under the examined conditions. After incorporation of TiO2 NPs modified with targeting protein pre-S1/S2, HepG2 cancer cells were subjected to the dual-frequency US at optimum irradiation intensities (“targeted-TiO2/dual-US treatment”). Growth of the HepG2 cells was reduced by 46% compared with the control condition after irradiation of dual-frequency US for 60 s with TiO2 NPs incorporation. In contrast, HepG2 cell growth was almost the same as that in the control condition when cells were irradiated with either 0.5 MHz or 1 MHz ultrasound alone without TiO2 NP incorporation.  相似文献   

12.
The interactions of silymarin with bovine serum albumin (BSA) and lysozyme (LYS) were investigated in physiological buffer (pH = 7.4) by fluorescence spectroscopy and UV–vis absorption spectroscopy. The mechanism study indicated that silymarin could strongly quench the intrinsic fluorescence of BSA and LYS through static quenching procedures. At 291 K, the values of the binding constant KA were 4.20×104 and 4.71×104 L mol?1 for silymarin–BSA and silymarin–LYS, respectively. Using thermodynamic equations, the conclusion that hydrophobic and electrostatic forces played an important role in stabilizing complex of silymarin–BSA or silymarin–LYS was obtained. The effects of Cu2+, Mg2+, Ca2+, Fe2+, and Fe3+ on the binding were also studied at 291 K. According to Förster’s nonradiative energy transfer theory, the distances r0 between donor and acceptor were calculated to be 3.36 and 2.71 nm for silymarin–BSA and silymarin–LYS, respectively. Synchronous fluorescence spectra showed that the conformation of BSA and LYS were changed by silymarin.  相似文献   

13.
The present investigation describes the addition of iron (Fe) in order to improve the supercapacitive properties of MnO2 electrodes using galvanostatic mode. These amorphous worm like Fe: MnO2 electrodes are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and wettability test. The supercapacitive properties of MnO2 and Fe: MnO2 electrodes are investigated using cyclic voltammetry, chronopotentiometry and impedance techniques. It is seen that the supercapacitance increases with increase in Fe doping concentration and achieved a maximum of 173 F g?1 at 2 at% Fe doping. The maximum supercapacitance obtained is 218 F g?1 for 2 at% Fe: MnO2 electrode. This hydrous binary oxide exhibited ideal capacitive behavior with high reversibility and high pulse charge–discharge property between ?0.1 and +0.9 V/SCE in 1 M Na2SO4 electrolyte indicating a promising electrode material for electrochemical supercapacitors.  相似文献   

14.
In this work we report fabrication of a nanocrystal (NC)-based hybrid organic–inorganic LED with structure of ITO/PEDOT:PSS/PVK/CdS-NCs/(Al or Mg:Ag). The hydrophilic CdS NCs were synthesized using a novel aqueous thermochemical method at 80 °C and sizes (around 2 nm) were controlled by thioglycolic acid (TGA) as the capping agent. The favorite feature of these NCs is their relatively high emission intensity and broad, near-white emission. The hydrophilic CdS NCs were successfully spin coated using Triton X-100 as the wetting agent. The fabricated LEDs demonstrated a turn on voltage about 7 V for Al metallic contact. The electroluminescence was a broad spectrum at 540 and 170 nm width, which was about 50 nm red shifted compared to photoluminescence spectra. The CIE color coordinates of the LED at (0.33, 0.43) demonstrated a near white light LED with an emission on green–yellow boundary of white. Annealing of the device up to 190 °C had a positive effect on the performance, possibly due to better contacts between layers. Replacing Al contacts with Mg:Ag reduced the turn-on voltage to 6 V and changed CIE color coordinate to (0.32, 0.41). The EL peak was also shifted to 525 nm, with a brightness of 15 Cd/m2 at working voltage of 15 V. The current efficiency and external quantum efficiency of device were 0.08 Cd/A and 0.03% at current densities higher than 10 mA/cm2.  相似文献   

15.
Photoelectron spectroscopy of isolated atoms and molecules using single-order high-harmonics of Ti:Sapphire laser pulses (800 nm, 12 fs/30 fs) is demonstrated. Dielectric multilayer mirrors, SiC/Mg and Mo/Si, are used to isolate the 27th (42 eV) and 59th (91 eV) order harmonics, respectively. The obtained harmonics are characterized by valence and inner-shell photoelectron spectroscopy of Xe. The applications to two-color two-photon ionization of He and pump-probe spectroscopy of ultrafast photodissociation of Br2, Br2(C1Πu)  Br(2P3/2) + Br(2P3/2), are presented.  相似文献   

16.
This paper deals with the current transport mechanism of solid state photoelectrochemical cells of ITO/TiO2/PVC–LiClO4/graphite as well as the physical properties of a component of a device affecting its performance. The principle of operation and a schematic energy level diagram for the materials used in the photoelectrochemical cells are presented. The device makes use of ITO films, TiO2 films, PVC–LiClO4 and graphite films as photoanode, photovoltaic material, solid electrolyte and counter electrode, respectively. The device shows rectification. The Jsc and Voc obtained at 100 mW cm−2 were 0.95 μAcm−2 and 180 mV, respectively.  相似文献   

17.
The oxygen tracer diffusion coefficient (D?) has been measured for 9 mol% scandia 2 mol% yttria co-doped zirconia solid solution, (Y2O3)2(Sc2O3)9(ZrO2)89, using isotopic exchange and line scanning by Secondary Ion Mass Spectrometry, as a function of temperature. The values of the tracer diffusion coefficient are in the range of 10? 8–10? 7 cm2 s? 1 and the Arrhenius activation energy was calculated to be 0.9 eV; both valid in the temperature range of 600–900 °C. Electrical conductivity measurements were carried out using 2-probe and 4-probe AC impedance spectroscopy, and a 4-point DC method at various temperatures. There is a good agreement between the measured tracer diffusion coefficients (D?, Ea = 0.9 eV) and the diffusion coefficients calculated from the DC total conductivity data (Dσ, Ea = 1.0 eV), the latter calculated using the Nernst–Einstein relationship.  相似文献   

18.
The interaction between ginkgolic acid (GA, C15:0) and bovine serum albumin (BSA) is investigated by several spectroscopic methodologies. At first, the binding characteristics of GA and BSA are determined by fluorescence emission spectra. It is showed that GA quenches the fluorescence of BSA and the static quenching constant KLB is 11.7891×104 L mol?1 s?1 at 297 K. GA and BSA form a 1:1 complex with a binding constant of 9.12×105 L mol?1. GA binds to the Sudlow's drug binding site II in BSA, and the binding distance between them is calculated as 1.63 nm based on the Förster theory. The thermodynamic parameters indicate that the interaction between BSA and GA is driven mainly by hydrophobic forces. On the other hand, structural analysis indicates that GA binding results in an increased hydrophobicity around the tryptophan residues of BSA as revealed by the synchronous fluorescence spectra, and a decrease in α-helix as revealed by the far-UV CD spectra. In addition, ANS, UV–vis and RLS experiments confirmed that GA binding causes a certain structural changes in BSA. These findings provide the binding information between BSA and GA, and may be helpful for pharmacokinetics and the design of dosage forms of GA.  相似文献   

19.
Composite cathodes of (1?x wt%)Pr1.6Sr0.4NiO4+(x wt%)Y2O3-stabilized ZrO2 (YSZ; x=0, 10, 20, 30, 40) abbreviated as Pr1.6Sr0.4NiO4+xYSZ, were prepared. The composite cathodes with x>0 matched with electrolyte YSZ in thermal expansion coefficient (TEC) better than the cathode Pr1.6Sr0.4NiO4 did. Pr1.6Sr0.4NiO4+20YSZ exhibited the best performance on cathode overpotential and impedance. When the cathode overpotential was 0.1 V, the polarization current density of Pr1.6Sr0.4NiO4+20YSZ was 0.28 A cm?2, which is about 5.6 times higher than that of Pr1.6Sr0.4NiO4, 0.05 A cm?2. The area-specific resistance (ASR) for Pr1.6Sr0.4NiO4+20YSZ was about 17.7% of that for Pr1.6Sr0.4NiO4 at 750 °C.  相似文献   

20.
《Solid State Ionics》2006,177(9-10):869-875
The electrochemical reduction of molten Li–Na–K carbonates at 450 °C provides “quasi-spherical” carbon nanoparticles with size comprised between 40 and 80 nm (deduced from AFM measurements). XRD analyses performed after washing and heat-treatment at various temperatures have revealed the presence of graphitised and amorphous phases. The d002 values were close to the ideal one obtained for pure graphite. Raman spectroscopy has pointed out surface disordering which increases with increasing temperature of the heat-treatment. The presence of Na and Li on the surface of the carbon powder has been evidenced by SIMS. The maximum Na and Li contents were observed for carbon samples heat-treated at 400 °C. Their electrochemical performances vs. the insertion/deinsertion of lithium cations were studied in 1 M LiPF6–EC : DEC : DMC (2 : 1 : 2). The first charge–discharge cycle is characterised by a high irreversible capacity as in the case of hard-disordered carbon materials. However, the potential profile in galvanostatic mode is intermediate between that usually observed for graphite and amorphous carbon: rather continuous charge–discharge curves sloping between 1.5 and 0.3 V vs. Li / Li+, and successive phase transformations between 0.3 and 0.02 V vs. Li / Li+. The best electrochemical performances were obtained with carbon powders heat-treated at 400 °C which exhibits a reversible capacity value of 1080 mAh g 1 (composition of Li2.9C6). This sample has also both the lowest surface disordering (deduced from Raman spectroscopy), and the highest Na and Li surface contents (deduced from SIMS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号