首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoprobe chemistry offers a promising approach for the construction of nanostructures consisting of organic molecules by employing the tip of a scanning probe microscope. In a previous report, we demonstrated that a nitroso-terminated surface on an organosilane self-assembled monolayer could be converted into an amino-terminated surface by applying such a nanoprobe electrochemical technique. This paper reports on surface-potential reversibility originating from a reversible chemical reaction between amino and nitroso groups. In addition, we demonstrate surface-potential memory based on this chemical reversibility. Amino-terminated SAMs were prepared from p-aminophenyl-trimethoxysilane through chemical vapor deposition. Surface potentials were acquired by Kelvin force microscopy. When scanning probe lithography was conducted with a gold tip at positive-bias voltages, the surface potential of the scanned area shifted dramatically in the negative direction. Scanning with negative-bias voltages led to positive shift in the surface potential of the scanned area. The surface potential could be recovered even after multiple scannings with positive and negative applied bias voltages. On the basis of this discovery, we also succeeded in demonstrating surface-potential memory via our nanoprobe electrochemical technique.  相似文献   

2.
A thiophene-containing molecule attached to a scanning tunneling microscopy (STM) tip is used to transport gold atoms on a Au(111) surface. The molecule contains eight thiophene rings and therefore has sulfur atoms that are known to bind to gold atoms. Using a gold-coated tip, the molecules previously deposited on the surface bind to the lower-coordination gold atoms of the tip. When that tip is used to scan the surface, the still free thiophene rings (not all of the sulfur atoms bind to the tip) can attach to gold atoms from the surface and drag them along the scanning direction, depositing them either at the position where the tip changes its scanning direction or where the tip encounters an "up step", whichever event occurs first.  相似文献   

3.
Abstract

A hybrid system involving graphene oxide (GO), magnetic oxide (Fe3O4), acrylamide and dicyandiamide was prepared via amine functionalization of GO/Fe3O4 by means of covalent bonding with acrylamide and subsequent reaction with dicyandiamide to provide a multinitrogen containing polymer on the surface of GO. This hybrid system was utilized as a heterogeneous catalyst support for immobilizing Pd nanoparticles to provide the hybrid, Pd@GO/Fe3O4/PAA/DCA. This nano-Pd composite was characterized using Fourier transform infrared, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, X-ray diffraction, and ICP techniques and used for promoting Sonogashira cross-coupling under mild reaction conditions. This heterogeneous and magnetic catalyst was easily separated by external magnet and was reused in a model reaction, efficiently up to six times with slight loss of catalytic activity and Pd leaching, showing the suitability of GO/Fe3O4/PAA/DCA for embedding Pd nanoparticles. To check the effect of the number of surface nitrogens of the polymeric chain on the catalytic performance, the activity of the catalyst was compared with Pd@GO/Fe3O4/PAA; increased number of the surface nitrogens on the chain polymer leads to higher loading of Pd and lower the Pd leaching.  相似文献   

4.

Pd nanoparticles supported on Bi2WO6 nanoplates used for visible-light-driven photocatalyst were successfully synthesized by photoreduction deposition method under visible-light irradiation. Different analytical techniques including X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and photoluminescence spectroscopy revealed that face-centered cubic metallic Pd nanoparticles were uniformly loaded on top of orthorhombic Bi2WO6 nanoplates to form heterostructure Pd/Bi2WO6 nanocomposites. Photocatalytic activities of pure Bi2WO6 sample and heterostructure Pd/Bi2WO6 nanocomposites were studied through the photodegradation of rhodamine B (RhB) under visible-light irradiation. The photocatalytic efficiency of Bi2WO6 was increased to the highest by being loaded with 5 wt% Pd and then decreased by being loaded with 10 wt% Pd. The improved photocatalytic efficiency caused by high-efficiency diffusion and separation of photo-generated charge carriers was explained and can lead to superior photodegradation of RhB under visible-light irradiation.

  相似文献   

5.
An approach for patterning surfaces with prepared nanoparticles is described. Chitosan-stabilized gold nanoparticles (Au/chitosan NPs) were locally deposited on stainless steel (StSt), indium tin oxide (ITO), and highly-ordered pyrolytic graphite (HOPG). Deposition was driven by local pH gradient formed between a surface and a scanning electrochemical microscopy tip set in the direct mode. The pH at the substrate was increased upon biasing the surface by negative potentials, which caused the reduction of water. As the pH on the surface exceeded that of $ {\mathrm{pK}}_{{\mathrm{chitosanH}}^{+}}\sim 6.3 $ deprotonation of the amino groups of chitosan caused the irreversible deposition of the chitosan/AuNPs. The effect of different parameters, such as tip–surface distance and time, on deposition was studied. While the potential duration showed no clear influence, smaller tip–substrate distance and more negative potentials applied to the surface caused larger deposits. The overpotential needed for the deposition of nanoparticles on HOPG was the highest while that for StSt was the lowest. On the former, the sluggish kinetics caused the deposition of ring-shaped structures while disk-shaped deposits were formed on the other surfaces.  相似文献   

6.
We report on the nanopatterning of double-bond-terminated silane (5-hexenyltrichlorosilane, HTCS) molecules on titania (TiO2) using conductive atomic force microscopy (AFM). The influences of tip electrostatic potential and scanning velocity, relative humidity and of the repeated application of voltage on the topographic height, width, and hydrophilic and hydrophobic contrast of the resultant patterns were investigated. Tip voltage and tip velocity ( v) were applied between -10 V 相似文献   

7.
AFM诱导正十八硫醇在金基底上的选择性生长   总被引:1,自引:0,他引:1  
扫描探针显微镜(SCCnningPF0boMICCOSCOPy,SPM)由于其极高的空间分辨能力和高度的可控性,已成为纳米尺度加工的有力工具[‘·’j.自Schneir等[’j报道原子级平整金基底的制备和用装备An针尖的扫描隧道显微镜(ScanningTunnelingMicroscoPy,STM)在基底上制备金纳米点以来,有关在All和HOPG等基底上制备由金点构成的任意图案的方法及用导电原子力显微镜(AtomicForceM卜roscopy,AFM)在HOPG和St基底上制备金点阵的工作已有许多报道[‘·’‘.用导电AFM和TaPPingmodeAFM”,’‘对St进行直接氧化可在其表面加…  相似文献   

8.
用化学镀法制备 Pd/Ag 膜时膜厚和组成的控制   总被引:1,自引:0,他引:1  
曾高峰  史蕾  徐恒泳 《催化学报》2009,30(12):1227-1232
 研究了不同 Pd2+含量的镀液在多孔陶瓷载体上的化学沉积规律, 发现当 Pd 沉积层厚度达到约 5 μm 后, 即使镀液中反应物的消耗比例很小, 膜厚增长也明显变缓, 沉积反应主要受膜层表面的催化活性位控制; 当镀液中 Pd2+含量只能沉积形成小于 4 μm 的 Pd 膜时, 在 323 K 化学镀 180 min 后, 镀液中 Pd2+的转化率高于 90%. 与之相似, 当 Ag 镀液中的 Ag+含量等于 0.5~2 μm 的 Ag 膜层所需量时, 在 333 K 化学镀 120 min 后, Ag+的转化率可达 95%. Ag+的高转化率与 Ag 颗粒的择向生长特性有关. 根据 Pd 和 Ag 的化学镀沉积规律, 通过调节镀液中金属离子的含量能够预先设计和精确控制超薄 Pd/Ag 膜的膜厚和组成.  相似文献   

9.
采用原位液体池透射电镜技术,在扫描透射电子显微镜(STEM)中,实时观察溶液中金属钯(Pd)在金(Au)纳米颗粒及团簇周围的异质沉积过程。通过对该动态过程的定量分析,结合高分辨透射电子显微镜(HRTEM)对样品进行形貌与结构表征,研究异质沉积的机理。结果表明,电子束辐照下Au-Pd异质结构纳米颗粒的形成存在两种主要机制:第一种机制中,Pd在Au纳米颗粒表面的生长是以岛状沉积开始,随着时间推移,出现Pd岛的结构弛豫和沿着Au颗粒表面的迁移扩展。伴随Pd的不断沉积和弛豫,Au-Pd复合颗粒的外接圆直径表现为震荡生长,而Au表面的Pd覆盖率显示出随时间单调增加的趋势。第二种机制中,由于Pd单体在Au纳米颗粒上的沉积位点有限,使部分被还原的Pd在Au颗粒以外区域进行同质形核与生长形成Pd团簇,之后再与Au颗粒上的Pd岛合并。进一步的结果分析显示,Au颗粒外围的Pd沉积体为多晶结构,由随机取向的Pd纳米晶粒构成。  相似文献   

10.
We illustrate in this paper the successful combination of the direct and feedback mode of scanning electrochemical microscopy (SECM) for the writing of oligonucleotide patterns on thin gold films alongside the imaging of DNA hybridization. The patterning process was achieved using the direct mode of SECM, where the electrical field established between the SECM tip and the gold interface was used to drive the local deposition of micrometre sized polypyrrole spots to which a 15(mer) oligonucleotide (ODN) strand was linked covalently. Imaging of the deposited polypyrrole-ODNs was achieved by means of the feedback mode of SECM using Ru(NH(3))(6)(3+) as the mediator. The detection of the hybridization reaction of the ODN probes with their biotinylated complementary strands using SECM was possible after subsequent reactions with streptavidin and biotinylated horseradish peroxidase (HRP). The HRP-biocatalyzed oxidation of 4-chloro-1-naphthol (1) in the presence of H(2)O(2), and the precipitation of the insoluble product 4-chloro-1-naphthon (2) on the hybridized areas on the gold film caused a local alteration of conductivity. Such a change in conductivity was sensitively detected by the SECM tip and allowed imaging of DNA arrays in a fast and straightforward way.  相似文献   

11.
The direct mode of scanning electrochemical microscopy (SECM) was used for the local deposition of oligonucleotide (ODN) patterns on thin gold films and the generation‐collection (GC) mode was applied for the determining the amount of surface‐accessible oligonucleotides. The local deposition was achieved through the micrometer‐sized formation of a conducting polymer bearing 15mer single‐stranded oligonucleotide strands. After the interaction of the oligonucleotide with its biotin‐labeled complimentary strand, streptavidin was bound. The molecular assembly was completed by linking biotin‐labeled β‐galactosidase from Escherichia coli to the streptavidin. The activity of the linked β‐galactosidase was mapped with SECM in the GC mode by monitoring the oxidation of p‐aminophenol (PAP) formed in the enzyme‐catalyzed hydrolysis of p‐aminophenyl‐β‐D ‐galactopyranoside. The feedback effect due to recycling of the reaction product at the gold surface was analyzed. It was shown experimentally that this effect becomes insignificant at ultramicroelectrode (UME)‐substrate distances larger than 3 UME radii. The flux of formed PAP allowed the determination the surface density of accessible oligonucleotide strands in the functionalized polymer. It was shown that that thicker pyrrole/ODN–Pyrrole polymer films do not lead to a significantly increased accessible ODN surface concentration.  相似文献   

12.
We are interested in fabricating well-organized assemblies of nanosized materials with wet chemical approaches for the purpose of investigating various interfacial and mesoscopic phenomena. The paper describes how to use self-assembling techniques to prepare assemblies of colloidal nanoparticles and single walled carbon nanotubes on solid surfaces. Gold nanocolloids are taken as the model system, including preparation of functionalized nanoparticles, assembling on tailored substrates, surface reorganization, and 1D, 0D controlled assembling with the aid of scanning probe lithography. The typical work we have been doing using these elaborated nanoparticle assemblies includes, the quantitative investigations of die electromagnetic coupling of particle-particle and particle-substrate in surface enhanced Raman scattering (SERS), the single electron tunneling in nanoparticle assemblies measured with scanning probe microscopy (SPM) technique, the atomic force microscopy (AFM) lithography using the surface-confined gold nanoparticles as mask.  相似文献   

13.
Micro- and nanoscale surface modification using scanning probe microscopy techniques in combination with electrochemically induced surface structuring provides a maskless in situ fabrication strategy enabling deposition or etching of three-dimensional nanostructures. This current opinion article focuses on scanning electrochemical probe microscopy techniques highlighting recent progress in nanoscale 3D surface modification along with a spotlight on approaches of practical relevance.  相似文献   

14.
Gold (Au) nanoparticles supported on alumina (Al2O3) were prepared at several pH levels via the deposition‐precipitation (DP) method. The effects of pH at below and above the isoelectric point (IEP) of Al2O3 as well as the pH adjustment before and after the addition of the support into the gold chloride solution were investigated. The results revealed the formation of cationic, clusters and metallic Au on alumina. The catalytic activity of these species was tested in the reduction of p‐nitrophenol (p‐NP) using hydrazine as a reductant. The catalytic reaction was monitored spectrophotometerically and the highest rate constant (k‐) achieved based on pseudo first order kinetic model was 12.7 × 10‐3 s‐1. Structural and elemental characterizations of the supported gold nanoparticles were carried out using X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy‐dispersive X‐rays (EDX), atomic absorption spectrometry (AAS), and ultraviolet‐visible spectroscopy (UV‐Vis).  相似文献   

15.
A novel type of palladium nanoparticles-modified multiwalled carbon nanotubes composite-electrode with electrocatalytic activity for oxygen reduction is presented. The nanocomposite was prepared by magnetron sputtering deposition with Pd in Ar atmosphere on MWNTs, which were synthesized on Ta plates by chemical vapor deposition. Both scanning electron microscopy and transmission electron microscopy were employed to observe the surface morphology. The Pd nanoparticles, with diameters around 5 nm, are dispersed at the tips and on the sidewalls of the MWNTs. Voltammetry, amperometry and electrochemical impedance measurements were used to demonstrate the strong electrocatalytic activity of the nanocomposite in acid solution. Compared to the bare MWNT electrode, the PdNPs/MWNT nanocomposite shows a positive shift of the O2 reduction current at onset potentials from +400 to +500 mV, a concurrent 1.5-fold increase in the O2 reduction peak current with high stability. The successful preparation of PdNPs/MWNTs nanocomposite by magnetron sputtering deposition opens a new path for an efficient dispersion of promising nanoparticles for fuel cells and O2 sensors.  相似文献   

16.
Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 mol L?1 NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi3+ and Pb2+ ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury‐coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5 % RSD) were obtained.  相似文献   

17.
The application of single-atom catalysts (SACs) to high-temperature hydrogenation requires materials that thermodynamically favor metal atom isolation over cluster formation. We demonstrate that Pd can be predominantly dispersed as isolated atoms onto TiO2 during the reverse water–gas shift (rWGS) reaction at 400 °C. Achieving atomic dispersion requires an artificial increase of the absolute TiO2 surface area by an order of magnitude and can be accomplished by physically mixing a precatalyst (Pd/TiO2) with neat TiO2 prior to the rWGS reaction. The in situ dispersion of Pd was reflected through a continuous increase of rWGS activity over 92 h and supported by kinetic analysis, infrared and X-ray absorption spectroscopies and scanning transmission electron microscopy. The thermodynamic stability of Pd under high-temperature rWGS conditions is associated with Pd-Ti coordination, which manifests upon O-vacancy formation, and the artificial increase in TiO2 surface area.  相似文献   

18.
The vast majority of reports of self-assembled monolayers (SAMs) on metals focus on the use of gold. However, other metals, such as palladium, platinum, and silver offer advantages over gold as a substrate. In this work, palladium is electrochemically deposited from PdCl2 solutions on glassy carbon electrodes to form a substrate for alkanethiol SAMs. The conditions for deposition are optimized with respect to the electrolyte, pH, and electrochemical parameters. The palladium surfaces have been characterized by scanning electron microscopy (SEM) and the surface roughness has been estimated by chronocoulometry. SAMs of alkane thiols have been formed on the palladium surfaces, and their ability to suppress a Faradaic process is used as an indication for palladium coverage on the glassy carbon. The morphology of the Pd deposit as characterized by SEM and the blocking behavior of the SAM formed on deposited Pd delivers a consistent picture of the Pd surface. It has been clearly demonstrated that, via selection of experimental conditions for the electrochemical deposition, the morphology of the palladium surface and its ability to support SAMs can be controlled. The work will be applied to create a mixed monolayer of metals, which can subsequently be used to create a mixed SAM of a biocomponent and an alkanethiol for biosensing applications.  相似文献   

19.
The application of single‐atom catalysts (SACs) to high‐temperature hydrogenation requires materials that thermodynamically favor metal atom isolation over cluster formation. We demonstrate that Pd can be predominantly dispersed as isolated atoms onto TiO2 during the reverse water–gas shift (rWGS) reaction at 400 °C. Achieving atomic dispersion requires an artificial increase of the absolute TiO2 surface area by an order of magnitude and can be accomplished by physically mixing a precatalyst (Pd/TiO2) with neat TiO2 prior to the rWGS reaction. The in situ dispersion of Pd was reflected through a continuous increase of rWGS activity over 92 h and supported by kinetic analysis, infrared and X‐ray absorption spectroscopies and scanning transmission electron microscopy. The thermodynamic stability of Pd under high‐temperature rWGS conditions is associated with Pd‐Ti coordination, which manifests upon O‐vacancy formation, and the artificial increase in TiO2 surface area.  相似文献   

20.
Patterning technologically important semiconductor interfaces with nanoscale metal films is important for applications such as metallic interconnects and sensing applications. Self-assembling block copolymer templates are utilized to pattern an aqueous metal reduction reaction, galvanic displacement, on silicon surfaces. Utilization of a triblock copolymer monolayer film, polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO), with two blocks capable of selective transport of different metal complexes to the surface (PEO and P2VP), allows for chemical discrimination and nanoscale patterning. Different regions of the self-assembled structure discriminate between metal complexes at the silicon surface, at which time they undergo the spontaneous reaction at the interface. Gold deposition from gold(III) compounds such as HAuCl4(aq) in the presence of hydrofluoric acid mirrors the parent block copolymer core structure, whereas silver deposition from Ag(I) salts such as AgNO3(aq) does the opposite, localizing exclusively under the corona. By carrying out gold deposition first and silver second, sub-100-nm gold features surrounded by silver films can be produced. The chemical selectivity was extended to other metals, including copper, palladium, and platinum. The interfaces were characterized by a variety of methods, including scanning electron microscopy, scanning Auger microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号