首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The radio-frequency muon spin resonance technique (RF-μSR) is described, with examples drawn from muon studies of fullerences. Two distinct species can be detected by RF-μSR when solid C60 is irradiated with positive muons. Endohedral muonium (Mu@C60) is characterized by a muon hyperfine constant (A μ) close to the vacuum value. A remarkable feature of the RF-μSR spectrum is the double quantum transition, which appears when the allowed transitions are saturated. The exohedral muonium adduct (C60Mu) is also detected, and has a much smaller value ofA μ typical of a carbon-centred organic radical. It has been studied by RF-μSR in dilute solution, which is not possible for transverse field muon spin rotation (TF-μSR). There is a significant difference inA μ of C60Mu in the solid and in solution, a result of great import to the analysis of avoided-level crossing experiments on13C60Mu.  相似文献   

2.
Muon irradiation of pure liquid 3‐chloropropene, CH2=CH-CH2Cl, yields a primary radical, \dot\mboxCH2-CHMu-CH2Cl, and a secondary radical, MuCH2-\rm\dot\mboxCH-CH2Cl. 2‐methyl‐3‐chloropropene yields only the tertiary radical, MuCH2-\rm\dot\mboxC(CH3)-CH2Cl. These three chloroalkyl radicals have been characterized by μSR and μLCR, and the hyperfine coupling constants (hfcs) have been determined over a range of temperatures, either in the pure liquid precursor or in concentrated solution. The temperature variation of the hfcs has been analyzed to obtain estimates of the barrier to internal rotation about the C_\alpha-C_\beta axis for various alkyl groups, and also their minimum energy conformations, i.e. their orientations with respect to the axis of the 2p_z orbital of the unpaired electron. The tertiary radical is particularly interesting because all three methyl‐like groups, -CH3,-CH2Cl and -CH2Mu, are represented. The results can be compared to electron spin resonance data for analogous radicals, to provide information on the effects of Mu substitution for H. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
This short communication draws attention to the power of μSR and related measurements in providing an unusually complete characterisation of muonium substituted organic radicals in the gas phase. Spectroscopic information is available from muon spin rotation and muon level crossing resonance, giving all the nuclear hyperfine coupling constants, just as in the liquid phase. In addition, measurements of the relaxation time of the muon Zeeman energy become possible; these are potentially informative on the molecular collision dynamics. Demonstration results are presented in summary for the muonium substituted ethyl radical, ĊH2CH2Mu, in ethene gas.  相似文献   

4.
LFμSR studies on the pure fullerenes C60 and C70 show temperature dependent features associated with the reorientational behaviour of the fullerenyl radicals MuC60 and MuC70 in the crystalline host substrate. If not excluded from the experimental setup, molecular oxygen undergoes spin exchange reactions with the radicals. The data for C60 correspond to a situation effectively static at 150 K and fully averaged to isotropy at 300 K, while for C70 the data conspicuously do not conform to the predictions of the pseudostatic model employed in ALC‐μSR studies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Medical grade propylene–ethylene (P–E) copolymer was irradiated by gamma rays. The radicals generated in the irradiated P–E copolymer were identified by using electron spin resonance (ESR) technique and the structural changes in the polymer were monitored with Fourier transform infrared spectroscopy (FTIR). The ESR spectra were analysed with computer simulations. The ESR studies show the formation of macro (~CH2–?H–CH2~), peroxy (POO˙), methyl and acyl (R–?=O) radicals and the asymmetric doublet, characteristic of peroxy radicals in the case of the sample irradiated at low dose (1 Mrad) and high doses (30 and 40 Mrad), respectively. The FTIR spectra of irradiated P–E copolymer indicate an increase in the concentration of peroxide groups. The absorption bands of –C=O and –OH groups were increased and the decline in the intensity of –CH3 group absorption band is reported.  相似文献   

6.
ALC μSR spectra of the muonated ethyl and cyclohexadienyl radicals in the gas phase are reported. They have surprisingly narrow lines for a magnetic resonance type technique under conditions near ambient temperature and near 1 atmosphere pressure. The main reason for this behaviour is the dramatic reduction of electron spin relaxation in high magnetic fields. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
An approximate unrestricted Hartree-Fock method is used to calculate spin densities in the odd alternant radicals cyclohexadienyl, benzyl, perinaphthenyl and triphenylmethyl and the linear polyene radicals from allyl to C19H21. The results agree quite well with the exact calculations and with empirical estimates as well as with experimental data on hyperfine splitting constants and E.S.R. second moments.  相似文献   

8.
Bombardment of C70 with positive muons leads to the formation of muonated radicals C70Mu. However, despite there being five distinct possible addition sites, only three radicals are easily observed with a fourth, very weak, signal also present. In order to provide guidance in assigning the radicals to specific sites, semi-empirical molecular-orbitals calculations of the analogous C70H radicals were undertaken. The results indicate that addition at the equatorial carbons is energetically disfavoured, and allow a reasonable assignment of the other sites to be made.  相似文献   

9.
Muon spin relaxation has been measured in longitudinal magnetic fields for Mu+CO and Mu+N2O reactions. The interpretation of the results for these small molecules, which are quite different than those obtained in larger molecule systems (e.g., Mu‐ethyl and Mu‐t‐butyl radicals), are made with the phenomenological model for Mu‐radical spin relaxation previously proposed. Proper fitting procedures are important in these cases and are discussed in the present paper. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Photoinduced polarons in solid films of polymer:fullerene blends were studied by photoluminescence (PL), photoinduced absorption (PIA) and electron spin resonance (ESR). The donor materials used were P3HT and MEH‐PPV. As acceptors we employed PC60BM as reference and various soluble C70‐derivates: PC70BM, two different diphenylmethano‐[70]fullerene oligoether (C70‐DPM‐OE) and two dimers, C70–C70 and C60–C70. Blend films containing C70 revealed characteristic spectroscopic signatures not seen with C60. Light‐induced ESR showed signals at g ≥ 2.005, assigned to an electron localized on the C70 cage. The formation of C70 radical anions also leads to a subgap PIA band at 0.92 eV, hidden in the spectra of C70‐based P3HT and MEH‐PPV blends, which allows for more exact studies of charge separated states in conjugated polymer:C70 blends. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
In this paper we present an overview of the radio-frequency muon spin resonance (RFμSR) technique, an analogue to continuous-wave NMR, and an introduction to time-integral (TI) and time-differential (TD) RFμSR on muons in diamagnetic or in paramagnetic environments. The general form of the resonance line for TI-RFμSR as well as the expression for the time-dependence of the longitudinal muon spin polarization at resonance are given. Since RFμSR does not require phase coherence of the muon spin ensemble, this technique allows us to investigate muon species that are generated by transitions from, or in the course of reactions of, a precursor muon species even if in transverse-field (TF) μSR measurements the signal is lost due to dephasing. This ability of RFμSR is clearly demonstrated by measurements on doped Si. In this example, at low temperatures, a very pronounced signal from a muon species in diamagnetic environment has been found in RFμSR measurements, whereas in TFμSR experiments only a very small signal from muons in diamagnetic environment could be detected and a large fraction of the implanted muons escaped detection. These findings could be interpreted in terms of the delayed formation of a diamagnetic muonium-dopant complex, and, due to the large diamagnetic RFμSR signal, the RFμSR technique is a unique tool to study how the variation of parameters and experimental conditions such as illumination affects formation and behavior of these complexes. First results obtained on illuminated boron doped Si are reported. However, as illustrated by the example of experiments on the muonated radical in solid C60, results from conventional TI-RFμSR cannot always be interpreted unambiguously since different parameters, namely the fraction of muons forming the investigated muon species, the longitudinal and the transverse relaxation rates, have similar effects on height and shape of the RFμSR resonance line. These ambiguities, however, may be resolved by collecting time-differential data. With this extension RFμSR becomes a very powerful complementary method to TFμSR in the studies of dynamic effects.  相似文献   

12.
Structural, electrical and magnetic measurements, as well as electron spin resonance (ESR) spectra, were used to characterise the single-crystalline CuCr1.6V0.4Se4 spinel and study the correlation between the negative magnetoresistance effect and magnon excitations. We established the ferromagnetic order below the Curie temperature T C ≈ 193 K, a p-type semiconducting behaviour, the ESR change from paramagnetic to ferromagnetic resonance at T C, a large ESR linewidth value and its temperature dependence in the paramagnetic region. Electrical studies revealed negative magnetoresistance, which can be enhanced with increasing magnetic field and decreasing temperature, while a detailed thermopower analysis showed magnon excitations at low temperatures. Spin–phonon coupling is explained within the framework of a complex model of paramagnetic relaxation processes as a several-stage relaxation process in which the V3+ ions, the exchange subsystem and conduction electron subsystem act as the intermediate reservoirs.  相似文献   

13.
Four of the five possible isomeric C70Mu radicals have been detected by transversefieldSR in a C70 powder sample at 298 K. Their assignment is based on the results of semi-empirical MNDO calculations. There are significant changes in intensity and lineshape of the signals at low temperature. The first SR spectrum of a fullerenyl radical in solution has been obtained.  相似文献   

14.
15.
We have investigated the effects of gamma irradiation on chemical structure, thermal and morphological properties of biodegradable semi-crystalline poly (glycolic acid) (PGA). PGA samples were subjected to irradiation treatment using a 60Co gamma source with a delivered dose of 30, 60 and 90?kGy, respectively. Gamma irradiation induces cleavage of PGA main chains forming ~O?H2 and ?H2COO~ radicals in both amorphous and crystalline regions. The free radicals formed in the amorphous region abstract atmospheric oxygen and convert them to peroxy radicals. The peroxy radical causes chain scission at the crystal interface through hydrogen abstraction from methylene groups forming the ~?HCOO~ (I) radical. Consequently, the observed electron spin resonance (ESR) doublet of irradiated PGA is assigned to (I). The disappearance of the ESR signal above 190°C indicates that free radicals are formed in the amorphous region and decay below the melting temperature of PGA. Fourier transform infrared and optical absorption studies confirm that the groups are not influenced by gamma irradiation. Differential scanning calorimetry (DSC) studies showed that the melting temperature of PGA decreased from 212°C to 202°C upon irradiation. Degree of crystallinity increased initially and then decreased with an increase in radiation as per DSC and X-ray diffraction studies. Irradiation produced changes in the physical properties of PGA as well as affecting the morphology of the material.  相似文献   

16.
The addition reaction Mu+NO+M→MuNO+M and the spin exchange reaction Mu(↑) +MO(↓)→Mu(↓)+NO(↑) have been measured by longitudinal field μSR at room temperature in the presence of up to 58 atm of N2 as inert collider. The pressure dependence of the longitudinal relaxation rate due to the addition reaction (λc) demostrates that the system is still in the low pressure regime in this pressure range. The corresponding termolecular rate constant has been determined ask 0,Mu =(1.10±0.25)×10−32 cm6 molecules−2 s−1, almost 4 times smaller than the corresponding H atom reactionk 0,H=3.90×10−32 cm6 molecules−2 s−1 [I.M. Campbell et al., J. Chem. Soc. Faraday Trans. 1.71 (1975) 2097]. The average value of the spin exchange rate constants in the 2.5–58 atm pressure range,k SE=(3.16±0.06)×10−10 cm3 molecule−1 s−1, is in good agreement with previous values obtained by transverse field μSR [D.G. Fleming et al., J. Chem. Phys. 73 (1980) 2751].  相似文献   

17.
The mechanisms of inelastic scattering of low-energy protons with a kinetic energy of 2–7 eV by C6H6, C6F12, C60, and C60F48 molecules are studied using the methods of quantum chemistry and nonempirical molecular dynamics. It is shown that, for the C6H6 + proton and C60 + proton systems, starting from a distance of 6 Å from the carbon skeleton, the electronic charge transfer from the aromatic molecule to H+ occurs with a probability close to unity and transforms the H+ ion into a hydrogen atom and the neutral C6H6 and C60 molecules into cation radicals. The mechanism of interaction of low-energy protons with C6F12 and C60F48 molecules has a substantially different character and can be considered qualitatively as the interaction between a neutral molecule and a point charge. The Coulomb perturbation of the system arising from the interaction of the noncompensated proton charge with the Mulliken charges of fluorine atoms results in an inversion of the energies of the electronic states localized, on the one hand, on the positively charged hydrogen ion and, on the other hand, on the C6F12 and C60F48 molecules. As a result, the neutral molecule + proton state becomes the ground state. In turn, this inversion makes the electronic charge transfer energetically unfavorable. Quantum-chemical and molecular-dynamics calculations on different levels of theory showed that, for fluorine derivatives of some aromatic structures (C6F12, C60F48), the barriers to proton penetration through carbon hexagons are two to four times lower than for the corresponding parent systems (C6H6, C60). This effect is explained by the absence of active π-electrons in the case of fluorinated molecules.  相似文献   

18.
Effect of composition, temperature and radiation dose in gamma irradiated acrylamide-2-acrylamido-2-methyl propane sulphonic acid (AA) copolymer has been investigated by electron spin resonance (ESR) and fourier transform infrared (FTIR) techniques. ESR spectra of gamma irradiated AA copolymer have been recorded under different conditions. The observed ESR spectra are analysed by computer simulation techniques, to separate the constituent component spectra. Magnetic parameters employed to simulate the component spectra enabled the identification of corresponding free radicals. The AA copolymer with low acrylamide content composed of macroradicals of the type ?CH2?CH?CH2? and methyl radicals (CH3) whereas the copolymer with high acryl amide content possess methyl radicals and radicals of the type ?CH2?C(CONH2)?CH2?/CH3?C?CH3. Reasons for the variation in the formation of free radicals have been explained. The observed changes in ESR spectra of irradiated AA copolymer at higher temperatures are thought to be due to the recombination of free radicals. Formation of free radicals found to be enhanced with the increase in dose of irradiation. FTIR spectra of pure and irradiated copolymers have also confirmed the previous results.  相似文献   

19.
In this paper, we present a survey of our ESR results on alkali-intercalated C60 compounds. As we are far from fully understanding the physical properties of fullerides, this article deals successively with the different phases in the phase diagram of A1C60 compounds. It focuses on both conducting and magnetic properties in metallic compounds, the spin ground state in insulating systems and phase transitions in A1C60 phases.  相似文献   

20.
Electron spin resonance (ESR) studies of ClO3 and ClO2 radicals in X-irradiated potassium perchlorate, KClO4, single crystals are carried out to investigate the radiation decomposition pathways. The orientation of the maximum principal component of the35Cl hyperfine tensor is determined by ESR and identified with that of the bond ruptured on irradiation. It is found that the weaker Cl-O(2)×2 bonds related by the mirror symmetry survive radiation damage, while the stronger Cl-O(3) and Cl-O(l) bonds get ruptured to form the ClO3 and ClO2 radicals, thus providing evidence for the important role played by the lattice symmetry during radiative decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号