首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Amphotericin B (AmB) is a well-known polyene antibiotic used to treat systemic fungal infections. It is commonly accepted that the presence of sterols in the membrane is essential for the AmB biological activity, that is, for the formation of transmembrane ion channels. The selective toxicity of AmB for fungal cells is attributed to the fact that it is more potent against fungal cell membranes containing ergosterol than against the mammalian membranes with cholesterol. According to the "primary complex" hypothesis, AmB associates with sterols in a membrane to form binary complexes, which may subsequently assemble into a barrel-stave channel. To elucidate the molecular nature of the AmB selectivity for ergosterol-containing membranes, in the present work, we used computational methods to study the formation of the putative AmB/sterol complexes in a lipid bilayer. The free energy profiles for the AmB-sterol association in phospholipid bilayers containing 30 mol % of sterols were calculated and thoroughly analyzed. The results obtained confirm the formation of specific AmB/ergosterol complexes and are used to determine the energetic and structural origin of the enhanced affinity of AmB for ergosterol than for cholesterol. The significance of this affinity difference for the mechanism of action of AmB is discussed. The data obtained allowed us also to suggest a possible origin of the increased selectivity of a novel class of less toxic AmB derivatives.  相似文献   

2.
Amphotericin B (AmB 1) is known to assemble and form an ion channel across biomembranes. We have recently reported that conformation-restricted derivatives of AmB 2-4 show different ergosterol preferences in ion-channel assays, which suggested that the orientation of the mycosamine strongly affects the sterol selectivity of AmB. The data allowed us to assume that compound 3 showing the highest selectivity would reflect the active conformation of AmB in the channel assembly. In this study, to gain further insight into the active conformation of AmB, we prepared a new intramolecular-bridged derivative 5, where the linker encompassed a hydrophilic glycine moiety. The derivative has almost equivalent ion-channel activity to those of AmB and 3. The antifungal activity of 5 compared with 3 improves significantly, possibly because the increasing hydrophilicity in the linker enhances the penetrability through the fungal cell wall. Conformation of 5 was well converged and very similar to that of 3, thus further supporting the notion that the conformations of these derivatives reproduce the active structure of AmB in the channel complex. Then we used the derivative to probe the mobility of AmB in the membrane by solid-state NMR. To measure dipolar couplings and chemical shift anisotropies, we incorporated [1-(13)C,(15)N]glycine into the linker. The results indicate that 5 is mostly immobilized in ergosterol-containing DMPC bilayers, implying formation of large aggregates of 5. Meanwhile some fraction of 5 remains mobile in sterol-free DMPC bilayers, suggesting promotion of AmB aggregation by ergosterol.  相似文献   

3.
Amphotericin B (AmB) is thought to exert its pharmacological effects by forming a barrel-stave assembly with ergosterol in fungal membranes. To examine the interaction between AmB and ergosterol (Erg) or cholesterol (Cho), (13)C- and (19)F-labelled covalent conjugates were prepared as reported previously (N. Matsumori et al. Chem. Biol. 2004, 11, 673-679). The CD spectra of the conjugates in a membrane-bound form suggested that the distance between the heptaene moieties of the ergosterol conjugates AmB-C(2)-(6-F)Erg 2 and AmB-C(2)-Erg 3 is similar to that of AmB in ergosterol-containing membranes, but significantly larger than that of AmB in nonsterol or cholesterol-containing membranes. These observations suggest that, as is the case with ergosterol-containing membranes, the conjugated sterol moiety prevents the close contact between the heptaene moieties within the membrane that would reduce channel conductivity of the AmB assemblies. To further investigate this bimolecular interaction, we recorded the solid-state NMR spectra of conjugates 2 and AmB-C(2)-(6-F)Cho 4, which are composed of uniformly (13)C-labelled AmB and 6-fluorinated ergosterol or cholesterol; the conjugates were expected to facilitate the estimation of distances between the fluorine and carbon atoms. By using rotor-synchronous double resonance (rotational echo double resonance of X cluster; RDX) experiments, we deduced the distance between the fluorine atom and its nearest carbon atom in the heptaene moiety of 2 to be less than 8.6 A. This indicates that the B ring of ergosterol comes close to the AmB polyene moiety. A conformational search of the AmB-ergosterol conjugate by using distance constraints derived from the RDX results suggested that ergosterol molecules possibly surround the AmB assembly, which is in contrast with the conventional image in which ergosterol is inserted into AmB molecules.  相似文献   

4.
Amphotericin B (AmB 1) is known to assemble together and form an ion channel across biomembranes. The antibiotic consists of mycosamine and macrolactone moieties, whose relative geometry is speculated to be determinant for the drug's channel activity and sterol selectivity. To better understand the relationship between the amino-sugar orientation and drug's activity, we prepared conformation-restricted derivatives 2-4, in which the amino and carboxyl groups were bridged together with various lengths of alkyl chains. K+ influx assays across the lipid-bilayer membrane revealed that ergosterol selectivity was markedly different among derivatives; short-bridged derivative 2 almost lost the selectivity, while 3 showed higher ergosterol preference than AmB itself. Monte Carlo conformational analysis of 2-4 based on NOE-derived distances indicated that the amino-sugar moiety of 2 comes close to C41 because of the short bridge, whereas those of 3 and 4 are pointing outward. The mutual orientation of the amino-sugar moiety and macrolide ring is so rigid in derivatives 2 and 3 that these conformations should be unchanged upon complex formation in lipid membranes. These results strongly suggest that the large difference in sterol preference between derivatives 2 and 3 is ascribed to the different orientation of amino-sugar moieties. These findings allowed us to propose a simple model accounting for AmB-sterol interactions, in which hydrogen bonding between 2'-OH of AmB and 3beta-OH of ergosterol plays an important role.  相似文献   

5.
Amphotericin B (AmB) is known to self-assemble to form an ion channel across lipid bilayer membranes. To gain insight into the conformation of AmB in lipidic environments, AmB in SDS micelles was subjected to high-resolution NMR and CD measurements, and the NMR-derived conformation thus obtained was refined by molecular mechanics calculations. These results indicate that AmB in SDS micelles is conformationally fixed particularly for the macrolide moiety. Paramagnetic relaxation experiments with the use of Mn2+ reveal that AmB is shallowly embedded in the micelle with the polyhydroxyl chain being close to the water interface and the side of polyene portion facing to the micelle interior. CD measurements demonstrate that AmB is in a monomeric form in SDS micelles. The structure of AmB in the micelles obtained in the present study may reproduce the initial stage of membrane interaction of AmB prior to the assembly formation in biomembranes.  相似文献   

6.
Amphotericin B (AmB) is a well-known polyene macrolide antibiotic used to treat systemic fungal infections. According to a well-documented hypothesis, molecules of AmB form ionic membrane channels that are responsible for chemotherapeutic action. These channels disturb the barrier function of the cell membrane which, in consequence, leads to cell death. The presence of sterols in the cell membrane is necessary for full manifestation of the antibiotic's ionophoric activity, at least in vivo. Ergosterol-containing fungal membranes are targeted more efficiently by AmB than mammalian membranes containing cholesterol. However, a similar level of disturbance of fungal and mammalian membranes is responsible for serious toxicity of the antibiotic. Due to the importance of AmB and lack of better antifungal alternatives, the search for new less toxic derivatives of this antibiotic still continues. Therefore, studies of the AmB-membrane interaction are very important. The present work constitutes a continuation of a broad program of study on AmB mode of action in our group. In particular, molecular dynamics simulations of AmB monomers inside the bilayers of three different compositions (pure dimiristoylphosphatidylcholine (DMPC) and DMPC bilayer containing approximately 25 mol % of cholesterol or ergosterol) were carried out. In general, analysis of generated trajectories resulted in identifying many significant differences in the behavior of AmB monomers depending on the membrane environment. In particular, it was established that the antibiotic increases the internal order of DMPC bilayer containing 25 mol % of cholesterol, while it has no effect on the order of the bilayer with the same amount of ergosterol. Performed calculations also revealed that relatively rigid and elongated AmB molecules exhibit higher affinity toward the sterol-containing lo phases and, therefore, may be cumulated in ordered membrane domains (e.g., lipid rafts). Since the partition coefficient between the ld and lo phase appears to be greater in the case of the ergosterol- compared to cholesterol-containing membrane, this effect can be also discussed as the possible origin of AmB-selective toxicity and indirect sterol involvement in expression of AmB activity.  相似文献   

7.
Amphotericin B-sterol conjugates were synthesized and examined for their membrane permeabilizing activity. Ergosterol and cholesterol, each connected with amphotericin B via an ethylenecarbamate or hexamethylenecarbamate linker, were examined by K(+) flux assays using liposomes and by single-channel recording across phospholipid membrane. Among four conjugates tested, AmB-ergosterol bearing an ethylenecarbamate linker exhibited the most powerful activity, which substantially exceeded that of the cholesterol homolog. Single-channel recording clearly exhibited that the ergosterol conjugate elicited channel current with the conductance of 28 pS, which was comparable with those by AmB, and revealed a higher channel open probability than the cholesterol conjugate. These results imply that direct interaction between amphotericin B and ergosterol is reproduced by their conjugate, which may serve as a model compound for understanding the drug's selective toxicity.  相似文献   

8.
[structure: see text] Covalently linked dimers of amphotericin B were prepared by cross-linking its carboxylic acid. Among these, a dimer with a linkage of 1,6-hexanediamine revealed potent hemolytic activity (EC50, 0.25 microM) while its N-acetyl derivative gave rise to large K+ ion flux in phosphatidylcholine liposomes, regardless of the presence or absence of sterols, suggesting that the dimers may serve as a tool for elucidating the structure of the ion channel assemblage formed by amphotericin B.  相似文献   

9.
The transport of ions and glucose across bilayer lipid membranes (BLM) facilitated by amphotericin B (AmB) is studied by use of planar BLMs and liposomal membranes. The transport characteristics change with time in the presence of cholesterol, while it is independent of time in the absence of cholesterol. The carrier‐type transport is observed immediately after the addition of AmB. In the presence of cholesterol, AmB forms a 1 : 1 complex with cholesterol and the channel is formed by aggregation of AmB‐cholesterol complexes. It is concluded that the number of the channels increases with time and that the carrier‐type transport decreases instead.  相似文献   

10.
Membrane pores that are induced in oriented membranes by an antimicrobial peptide (AMP), protegrin-1 (PG-1), are investigated by (31)P and (2)H solid state NMR spectroscopy. We incorporated a well-studied peptide, protegrin-1 (PG-1), a beta-sheet AMP, to investigate AMP-induced dynamic supramolecular lipid assemblies at different peptide concentrations and membrane compositions. Anisotropic NMR line shapes specifying toroidal pores and thinned membranes, which are formed in membrane bilayers by the binding of AMPs, have been analyzed for the first time. Theoretical NMR line shapes of lipids distributed on the surface of toroidal pores and thinned membranes reproduce reasonably well the line shape characteristics of our experimentally measured (31)P and (2)H solid-state NMR spectra of oriented lipids binding with PG-1. The lateral diffusions of lipids are also analyzed from the motionally averaged one- and two-dimensional (31)P and (2)H solid-state NMR spectra of oriented lipids that are binding with AMPs.  相似文献   

11.
Solid-state NMR spectroscopy is being used to determine the structures of membrane proteins involved in the regulation of apoptosis and ion transport. The Bcl-2 family includes pro- and anti-apoptotic proteins that play a major regulatory role in mitochondrion-dependent apoptosis or programmed cell death. The NMR data obtained for (15)N-labeled anti-apoptotic Bcl-xL in lipid bilayers are consistent with membrane association through insertion of the two central hydrophobic alpha-helices that are also required for channel formation and cytoprotective activity. The FXYD family proteins regulate ion flux across membranes, through interaction with the Na(+), K(+)-ATPase, in tissues that perform fluid and solute transport or that are electrically excitable. We have expressed and purified three FXYD family members, Mat8 (mammary tumor protein), CHIF (channel-inducing factor) and PLM (phospholemman), for structure determination by NMR in lipids. The solid-state NMR spectra of Bcl-2 and FXYD proteins, in uniaxially oriented lipid bilayers, give the first view of their membrane-associated architectures.  相似文献   

12.
A series of ion conductors have been synthesized in which the degree of facial hydrophilicity has been systematically varied. Specifically, conjugates have been prepared from cholic acid and spermine in which the hydrophilic face of each sterol bears methoxy (1), hydroxy (2), carbamate (3), or sulfate groups (4). The ability of these conjugates to promote the transport of Na(+) across phosphatidylcholine membranes of varying thickness has been investigated by (23)Na NMR spectroscopy. Examination of observed activities in three different phosphatidylcholine membranes has provided evidence for membrane-spanning dimers as the transport-active species. In the thinnest membranes investigated, made from 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (C14), Na(+)-transport activity was found to increase, substantially, with increasing facial hydrophilicity. In thicker membranes, made from 1,2-dioleoyl-sn-glycero-3-phosphocholine (C18), observed activities were found to decrease with increasing facial hydrophilicity; with a membrane of intermediate thickness, prepared from 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (C16), ion-conducting activity increased and then decreased, with continuous increases in facial hydrophilicity. The possible origins for these variations in activity are briefly discussed.  相似文献   

13.
Based on an amphotericin B (AmB) ion-channel model where the close proximity of neighboring molecules is effected by interaction between carboxyl and amino groups, we prepared covalent dimers of AmB connected between these functionalities. While directly connected and short-tethered derivatives (2 and 3) lacked the activities, dimer 4 with a longer linker revealed K+ ion flux activity, suggesting that some distance and/or flexibility between the carboxyl and amino groups in adjacent molecules is required for the formation of ion-permeable complex in biomembranes.  相似文献   

14.
Exploiting naturally abundant (14)N and (31)P nuclei by high-resolution MAS NMR (magic angle spinning nuclear magnetic resonance) provides a molecular view of the electrostatic potential present at the surface of biological model membranes, the electrostatic charge distribution across the membrane interface, and changes that occur upon peptide association. The spectral resolution in (31)P and (14)N MAS NMR spectra is sufficient to probe directly the negatively charged phosphate and positively charged choline segment of the electrostatic P(-)-O-CH(2)-CH(2)-N(+)(CH(3))(3) headgroup dipole of zwitterionic DMPC (dimyristoylphosphatidylcholine) in mixed-lipid systems. The isotropic shifts report on the size of the potential existing at the phosphate and ammonium group within the lipid headgroup while the chemical shielding anisotropy ((31)P) and anisotropic quadrupolar interaction ((14)N) characterize changes in headgroup orientation in response to surface potential. The (31)P/(14)N isotropic chemical shifts for DMPC show opposing systematic changes in response to changing membrane potential, reflecting the size of the electrostatic potential at opposing ends of the P(-)-N(+) dipole. The orientational response of the DMPC lipid headgroup to electrostatic surface variations is visible in the anisotropic features of (14)N and (31)P NMR spectra. These features are analyzed in terms of a modified "molecular voltmeter" model, with changes in dynamic averaging reflecting the tilt of the C(beta)-N(+)(CH)(3) choline and PO(4)(-) segment. These properties have been exploited to characterize the changes in surface potential upon the binding of nociceptin to negatively charged membranes, a process assumed to proceed its agonistic binding to its opoid G-protein coupled receptor.  相似文献   

15.
Two well-known antifungals, amphotericin B (AmB) and amphodinol 3 (AM3), are thought to exert antifungal activity by forming ion-permeable channels or pores together with sterol molecules. However, detailed molecular recognitions for AmB-sterol and AM3-sterol in lipid bilayers have yet to be determined. Toward (19)F NMR-based investigation of the molecular recognition underlying their potent antifungal activity, we synthesized 6-fluoro-ergosterol in five steps via ring opening of (5α,6α)-epoxide of ergosterol acetate with using novel combination of TiF(4) and n-Bu(4)N(+)Ph(3)SiF(2)(-). Then we evaluated its activity of promoting pore formation of AmB and AM3, and found that pore formation of AmB was barely promoted by 6-F-ergosterol in clear contrast to the dramatic promotion effect of unmodified ergosterol, whereas AM3 activity was markedly enhanced in the presence of 6-F-ergosterol, which was comparable to that of unmodified ergosterol. These results indicate that the introduction of an F atom at C6 position of ergosterol plays an inhibitory role in interacting with AmB, but it is not the case with AM3.  相似文献   

16.
Biosensors that make use of transport processes across lipid membranes are very rare even though a stimulus, the binding of a single analyte molecule, can enhance the sensor response manifold if the analyte leads to the transport of more than one ion or molecule across the membrane. Prerequisite for a proper function of such membrane based biosensors is the formation of lipid bilayers attached to a support that allow for the insertion of membrane peptides and proteins in a functional manner. In this review, the current state of the art technologies to obtain lipid membranes on various supports are described. Solid supported membranes on transparent and electrically conducting surfaces, lipid bilayers on micromachined apertures and on porous materials are discussed. The focus lies on the applicability of such membranes for the investigation of transport phenomena across lipid bilayers facilitated by membrane embedded peptides, channel proteins and transporters. Carriers and channel forming peptides, which are easy to handle and rather robust, are used frequently to build up membrane based biosensors. However, channel forming proteins and transporters are more difficult to insert functionally and thus, there are yet only few examples that demonstrate the applicability of such systems as biosensor devices.   相似文献   

17.
The glycosyl carrier lipids, dolichylphosphate (C(95)-P) and undecapreylphosphate (C(55)-P) are key molecular players in the synthesis and translocation of complex glycoconjugates across cell membranes. The molecular mechanism of how these processes occur remains a mystery. Failure to completely catalyze C(95)-P-mediated N-linked protein glycosylation is lethal, as are defects in the C(55)-P-mediated synthesis of bacterial cell surface polymers. Our recent NMR studies have sought to understand the role these "super-lipids" play in biosynthetic and translocation pathways, which are of critical importance to problems in human biology and molecular medicine. The PIs can alter membrane structure by inducing in the lamellar phospholipids (PL) bilayer a non-lamellar or hexagonal (Hex(II)) structure. Membrane proteins that bind PIs contain a transmembrane binding motif, designated a PI recognition sequence (PIRS). Herein we review our recent combination of (1)H- and (31)P NMR spectroscopy and energy minimized molecular modeling studies that have determined the preferred orientation of PIs in model phospholipids membranes. They also show that the addition of a PIRS peptide to nonlamellar membranes induced by the PIs can reverse the Hex(II) phase back to a lamellar structure. Our molecular modeling calculations have also shown that as many as five PIRS peptides can bind to a single PI molecule. These findings lead to the hypothesis that the PI-induced Hex(II) structure may have the potential of forming a membrane channel that could facilitate glycoconjugate translocation processes. This is an alternate hypothesis to the possible existence of hypothetical "flippases" to accomplish movement of hydrophilic sugar chains across hydrophobic membranes.  相似文献   

18.
Impact of novel screening technologies on ion channel drug discovery   总被引:1,自引:0,他引:1  
Ion channels are a large superfamily of membrane proteins that pass ions across membranes. They are critical to diverse physiological functions in both excitable and nonexcitable cells and underlie many diseases. As a result, they are an important target class which is proven to be highly "druggable". However, for high throughput screening (HTS), ion channels are historically difficult as a target class due to their unique molecular properties and the limitations of assay technologies that are HTS-amendable. In this article, we describe the background of ion channels and current status and challenges for ion channel drug discovery, followed by an overview of both conventional and newly emerged ion channel screening technologies. The critical impact of such new technologies on current and future ion channel drug discovery is also discussed.  相似文献   

19.
The interactions of amphotericin B (AmB) with sterols and phospholipids have been studied by adsorption of AmB from aqueous solutions into Langmuir monolayers from dipalmitoyl phosphatidylcholine (DPPC), ergosterol, cholesterol and their mixtures. The results show that AmB exhibits stronger interaction with cholesterol than ergosterol in one-component monolayers. However, for DPPC–sterol monolayers, the effectiveness of AmB penetration depends on the proportion of both film components in the mixed film as well as on the strength of interaction between DPPC and particular sterol.  相似文献   

20.
KCNE1 is known to modulate the voltage‐gated potassium channel α subunit KCNQ1 to generate slowly activating potassium currents. This potassium channel is essential for the cardiac action potential that mediates a heartbeat as well as the potassium ion homeostasis in the inner ear. Therefore, it is important to know the structure and dynamics of KCNE1 to better understand its modulatory role. Previously, the Sanders group solved the three‐dimensional structure of KCNE1 in LMPG micelles, which yielded a better understanding of this KCNQ1/KCNE1 channel activity. However, research in the Lorigan group showed different structural properties of KCNE1 when incorporated into POPC/POPG lipid bilayers as opposed to LMPG micelles. It is hence necessary to study the structure of KCNE1 in a more native‐like environment such as multi‐lamellar vesicles. In this study, the dynamics of lipid bilayers upon incorporation of the membrane protein KCNE1 were investigated using 31P solid‐state nuclear magnetic resonance (NMR) spectroscopy. Specifically, the protein/lipid interaction was studied at varying molar ratios of protein to lipid content. The static 31P NMR and T1 relaxation time were investigated. The 31P NMR powder spectra indicated significant perturbations of KCNE1 on the phospholipid headgroups of multi‐lamellar vesicles as shown from the changes in the 31P spectral line shape and the chemical shift anisotropy line width. 31P T1 relaxation times were shown to be reversely proportional to the molar ratios of KCNE1 incorporated. The 31P NMR data clearly indicate that KCNE1 interacts with the membrane. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号