首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We consider the second order evolution equations of the displacement and rotation fields in any points of the middle surface of a shell in Naghdi's formulation. We establish that, with two controls, the exact controllability on part of the lateral boundary is achieved under the sufficient geometrical condition that the middle surface of the shell is “not too far” from a plane in a sense that is made more precise in the proof.  相似文献   

2.
For 1‐D quasilinear wave equations with different types of boundary conditions, based on the theory of the local exact boundary controllability, using an extension method, the author establishes the exact controllability in a shorter time by means of internal controls acting on suitable domains. In particular, the exact controllability can be realized only by internal controls, and the control time can be arbitrarily small. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this work, we consider the question of controllability of a class of integrodifferential equations on Hilbert space with measures as controls. We assume that the linear part has a resolvent operator in the sense given by R. Grimmer. We generalize the original work of N. Ahmed on vector measures, and we use it to develop necessary and sufficient conditions for weak and the exact controllability of the integrodifferential equation. Using the latter, we prove that exact controllability of the integrodifferential equation implies exact controllability of a perturbed integrodifferential equation. Controllability problem for the perturbed system is formulated fixed point problem in the space of vector measures. Our results cover impulsive controls as well as regular controls. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
For 1‐D first order quasilinear hyperbolic systems without zero eigenvalues, based on the theory of exact boundary controllability of nodal profile, using an extension method, the exact controllability of nodal profile can be realized in a shorter time by means of additional internal controls acting on suitably small space‐time domains. On the other hand, using a perturbation method, the exact controllability of nodal profile for 1‐D first order quasilinear hyperbolic systems with zero eigenvalues can be realized by additional internal controls to the part of equations corresponding to zero eigenvalues. Furthermore, by adding suitable internal controls to all the equations on suitable domains, the exact controllability of nodal profile for systems with zero eigenvalues can be realized in a shorter time.  相似文献   

5.
In this Note, the exact synchronization for a coupled system of wave equations with Dirichlet boundary controls and some related concepts are introduced. By means of the exact null controllability of a reduced coupled system, under certain conditions of compatibility, the exact synchronization, the exact synchronization by groups, and the exact null controllability and synchronization by groups are all realized by suitable boundary controls.  相似文献   

6.
In this paper, the exact synchronization for a coupled system of wave equations with Dirichlet boundary controls and some related concepts are introduced. By means of the exact null controllability of a reduced coupled system, under certain conditions of compatibility, the exact synchronization, the exact synchronization by groups, and the exact null controllability and synchronization by groups are all realized by suitable boundary controls.  相似文献   

7.
In this paper we deal with the local exact controllability of the Navier–Stokes system with distributed controls supported in small sets. In a first step, we present a new Carleman inequality for the linearized Navier–Stokes system, which leads to null controllability at any time T>0. Then, we deduce a local result concerning the exact controllability to the trajectories of the Navier–Stokes system.  相似文献   

8.
Abstract In this note we analyze the exact controllability of singularly perturbed damped wave equations under more general geometric control condition than that of [1]. We show that the null controllability of the heat equation can be obtained as a singular limit of the exact controllability of such sorts of wave equations. The work of Yuping Tang was carried out when she visited the “School of Mathematics, Sichuan University”. The work of Xu Zhang was partially supported by NSF of China under Grant 19901024  相似文献   

9.
This paper concerns the problem of feedback null controllability and blowup controllability with feedback controls for ordinary differential equations. First, we study the feedback null controllability on a time-varying ordinary differential system by unbounded feedback operators. Then, the global exact blowup controllability with feedback controls is derived on a time-invariant ordinary differential system. Finally, we obtain the approximate null controllability by bounded feedback operators, and get the approximate blowup controllability with feedback controls for ordinary differential equations.  相似文献   

10.
This paper is addressed to studying the exact controllability of stochastic Schrödinger equations by two controls. One is a boundary control and the other is an internal control in the diffusion term. By means of the duality argument, the control problem is converted into an observability problem for backward stochastic Schrödinger equations, and the desired observability estimate is obtained by a global Carleman estimate. At last, we give a result about the lack of exact controllability, which shows that the action of two controls is necessary.  相似文献   

11.
For first-order quasilinear hyperbolic systems with zero eigenvalues, the author establishes the local exact controllability in a shorter time-period by means of internal controls acting on suitable domains. In particular, under certain special but reasonable hypotheses, the local exact controllability can be realized only by internal controls, and the control time can be arbitrarily small.  相似文献   

12.
For first-order quasilinear hyperbolic systems with zero eigenvalues, the author establishes the local exact controllability in a shorter time-period by means of internal controls acting on suitable domains. In particular, under certain special but reasonable hypotheses, the local exact controllability can be realized only by internal controls, and the control time can be arbitrarily small.  相似文献   

13.
This study investigates the exact controllability problem for a vibrating non-classical Euler–Bernoulli micro-beam whose governing partial differential equation (PDE) of motion is derived based on the non-classical continuum mechanics. In this paper, it is proved that via boundary controls, it is possible to obtain exact controllability which consists of driving the vibrating system to rest in finite time. This control objective is achieved based on the PDE model of the system which causes that spillover instabilities do not occur.  相似文献   

14.
This paper deals with the global exact controllability for first-order quasilinear hyperbolic systems of diagonal form with linearly degenerate characteristics. When the system has no zero characteristics, we establish the global exact boundary controllability from one arbitrarily preassigned C1C1 data to another by means of a constructive method, in which the desired boundary controls can be acted either on both sides or only on one side. Sharp estimates on the exact controllable time are given in both cases. When the system has some zero characteristics, the global exact controllability is also established.  相似文献   

15.
Based on the theory of exact boundary controllability of nodal profile for hyperbolic systems, the authors propose the concept of exact boundary controllability of partial nodal profile to expand the scope of applications. With the new concept, we can shorten the controllability time, save the number of controls, and increase the number of charged nodes with given nodal profiles. Furthermore, we introduce the concept of in-situ controlled node to deal with a new situation that one node can be charged and controlled simultaneously. The minimum number of boundary controls on the entire tree-like network is determined by using the concept of ‘degree of freedom of charged nodes’ introduced. And the concept of ‘control path’ is introduced to appropriately divide the network, so that we can determine the infimum of controllability time. General frameworks of constructive proof are given on a single interval, a star-like network, a chain-like network and a planar tree-like network for linear wave equation(s) with Dirichlet, Neumann, Robin and dissipative boundary conditions to establish a complete theory on the exact boundary controllability of partial nodal profile.  相似文献   

16.
The exact boundary controllability and the exact boundary observability for the 1-D first order linear hyperbolic system were studied by the constructive method in the framework of weak solutions in the work [Lu, X. and Li, T. T., Exact boundary controllability of weak solutions for a kind of first order hyperbolic system — the constructive method, Chin. Ann. Math. Ser. B, 42(5), 2021, 643–676]. In this paper, in order to study these problems from the viewpoint of duality, the authors establish ...  相似文献   

17.
By means of a non‐exact controllability result, we show the necessity of the conditions of compatibility for the exact synchronization by two groups for a coupled system of wave equations with Dirichlet boundary controls. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
By means of a non‐exact controllability result, we show the necessity of the conditions of compatibility for the exact synchronization by two groups for a coupled system of wave equations with Dirichlet boundary controls. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The authors prove the global exact boundary controllability for the cubic semi-linear wave equation in three space dimensions, subject to Dirichlet, Neumann, or any other kind of boundary controls which result in the well-posedness of the corresponding initial-boundary value problem. The exponential decay of energy is first established for the cubic semi-linear wave equation with some boundary condition by the multiplier method, which reduces the global exact boundary controllability problem to a local one. The proof is carried out in line with [2, 15]. Then a constructive method that has been developed in [13] is used to study the local problem. Especially when the region is star-complemented, it is obtained that the control function only need to be applied on a relatively open subset of the boundary. For the cubic Klein-Gordon equation, similar results of the global exact boundary controllability are proved by such an idea.  相似文献   

20.
In this paper, the one-sided exact boundary null controllability of entropy solutions is studied for a class of general strictly hyperbolic systems of conservation laws, whose negative (or positive) characteristic families are all linearly degenerate. The authors first prove the well-posedness of semi-global solutions constructed as the limit of ε-approximate front tracking solutions to the mixed initial-boundary value problem with general nonlinear boundary conditions and they establish various properties of both the ε-approximate front tracking solutions and such solutions. By means of essential modifications of the strategy suggested by the first author in [17] originally for the local exact boundary controllability in the framework of classical solutions, the one-sided local exact boundary null controllability of entropy solutions can then be realized via boundary controls acting on one side of the boundary, where the incoming characteristics are all linearly degenerate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号